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ABSTRACT. We explain, in the case of good reduction, the conjecture of Langlands
and Rapoport describing the structure of the points on the reduction of a Shimura
variety (Langlands and Rapoport 1987, 5.e, p169), and we derive from it the formula
conjectured in (Kottwitz 1990, 3.1), which expresses a certain trace as a sum of
products of (twisted) orbital integrals. Also we introduce the notion of an integral
canonical model for a Shimura variety, and we extend the conjecture of Langlands and
Rapoport to Shimura varieties defined by groups whose derived group is not simply
connected. Finally, we briefly review Kottwitz’s stabilization of his formula.
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0. INTRODUCTION

After giving an outline of the article, we discuss some of the history of the
problems described here. Then we make some general comments, and list some of
our notations.

Outline. In §1 we review the basic theory of Shimura varieties, and in particular,
the notion of the canonical model Sh(G, X) of a Shimura variety over its reflex field
E = E(G,X). Let K,, be a compact open subgroup of G(Q,), and let

Sh,(G, X) = Sh(G, X)/K,.

If v is a prime of E lying over p, then Sh,(G, X) may fail to have good reduction at
v for essentially two different reasons: the group G may be ramified at p, or K, may
not be maximal. The assumption that K, is hyperspecial obviates both problems,
and Langlands [Langlands 1976, p411] suggests that Shy,(G, X) will then have a
smooth model over the ring of integers O, in E,. But if the Shimura variety has
one smooth model, it will have many, and their points with coordinates in F may
differ. In §2 we introduce the notion of an integral canonical model of a Shimura
variety. This is a smooth model of Sh,(G, X) over O, satisfying certain conditions
sufficient to determine it uniquely. To check that the definition is reasonable, we
verify that the moduli schemes constructed in [Mumford 1965] form an integral
canonical model for the Siegel modular variety.

Henceforth, we assume that our Shimura variety has a canonical integral model
Sh,(G, X),, and we write Sh,(F) for the set of its points with coordinates in F.
There are commuting actions of the geometric Frobenius element ® and of G(A’})
on Sh,(F), and the purpose of the conjecture of Langlands and Rapoport is to
describe the isomorphism class of the triple (Sh,(F), ®, x), that is, of the set with
the two commuting actions.

In §3 we define a groupoid B with additional structure, the pseudomotivic
groupoid, that (conjecturally) is the groupoid associated with the Tannakian cat-
egory of motives over the algebraic closure F of a finite field.

Let B¢ be the neutral groupoid defined by G, and consider a homomorphism
S B — ‘B) In §4 we explain how to attach to ¢ a triple (S(p), ®(v), x(p)),
" where S() is a set of the form

S(p) = I, (Q7\XP(#) x Xp(e),

®(p) is a “Frobenius” operator, and x (i) is an action of G(A%) on S(p) commuting
with the action of ®(p). The main conjecture (see 4.4) then states that

(Shp(F), @, x) ~ [1,,(S(#), 2(), X (¢)) (0.1)
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where the disjoint union is over a certain set of isomorphism classes of homomor-
phisms ¢: P — B¢

In our statement of this conjecture, we have changed the indexing set for the
¢’s from that of Langlands and Rapoport so that the conjecture now applies also
to Shimura varieties Sh(G, X) for which G9" is not simply connected. An example
[Langlands and Rapoport 1987, §7] shows that the original conjecture fails in general
when G9 is not simply connected. Here we turn their arguments around to show
that if the (modified) conjecture is true for the Shimura varieties for which G is
simply connected, then it is true for all Shimura varieties.

The philosophy underlying Deligne’s axioms for a Shimura variety is that a
Shimura variety with rational weight should be a moduli varieties for motives, and
it was this that suggested the general shape of (0.1). The realization of Sh(G, X)
as a moduli variety for motives depends on the choice of a faithful representation
£: G — GL(V) of G. Choose such a £ and let t be a family of tensors for V' such
that £(G) is the subgroup of GL(V) fixing the tensors (up to a constant). There
should be a bijection between Sh,(F) and a certain set of isomorphism classes of
quadruples (M,s,n?,A,) with M a motive over F, s a set of tensors for M, n?
a prime-to-p level structure on M (an isomorphism V(A%) — M), and A, a p-
integral structure on M. The isomorphism classes of pairs (M,s) should be in
one-to-one correspondence with the isomorphism classes of “admissible” ¢’s, and
if ¢ corresponds to (M,s), then XP(p) should be the set of “admissible” prime-
to-p level structures on M, and X,(y) should be the set of “admissible” p-integral
structures on M. Since I,(Q) is the group of automorphisms of (M,s), when we
consider the quadruples up to isomorphism, we find that

S(p) = I,(Q\(XP(0)/2") x Xp(p),

where Z' is the closure of Z(Q) in Z(A}).

Let K = K? - K, be a compact open subgroup of G(Ay), and let Shg (G, X) =
Sh(G, X)/K. In §5 we derive from (0.1) a description of the set Shg (F,) of points
on Shg (G, X), with coordinates in a finite field F, containing the residue field x(v)
at v. We leave it as an easy exercise in combinatorics for the reader to show that
the knowledge of Card(Shg (F,)) for all F; D s(v) is equivalent to the knowledge of
the pair (Shg(F), ®) (up to isomorphism), that is, without the action' of G(A%).

Knowing the cardinality of Shg (F,) for all Fy O s(v) is equivalent to knowing
that part of the local zeta function of Shi (G, X) at v coming from the cohomology

ronically, because it is the main point of their paper, Langlands and Rapoport misstate their

conjecture by not requiring that the bijection (0.1) be G(AF)-equivariant—Langlands assures me
that this should be considered part of the conjecture. It is essential for the applications.
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of Shg (G, X) with compact support (hence the whole of the zeta function when
Sh(G, X) is complete). More generally, when we want to study the zeta function of
the sheaf V(€) on Sh(G, X) defined by a representation £ of G, we need to consider
a sum

> TH(T(9) V() (0.2)

where 7 (g) is the Hecke operator defined by g € G(AT), T () denotes the com-
posite of the Hecke correspondence defined by g with the rth power of the Frobenius
correspondence, and the sum runs over the points of ¢’ of Shxngx4-1(G, X)(F) such
that T(g)(t') = ®"(t') =t (see C.6). In §6 we derive from the main conjecture a
formula

Yo TH(T(9)DVi(€)) =
> vol(I(Q\L,(Af)) - Oy (fP) - TOs(¢:) - Te(0)  (0.3)

(¢.8)

where O,(fP) is a certain orbital integral, TOs(¢,) is a certain twisted orbital
integral, and (v0;7,6) is a certain triple attached to a pair (p,€) in the indexing
set. Call a triple (v0;7,8) effective if it arises from a pair (p,£). Then each
effective triple occurs only finitely number many times, and the term corresponding
to (p,€) depends only on the triple attached to it. Thus we can rewrite (0.3) as

Sy TH(T (9D We(€)) =
> o) - vol(I@\I(Af)) - Oy (f7) - TOs(y) - Te(70)  (0-4)

[vo3y,6]

where the sum is over a set of representatives for the equivalence classes of effective
triples and c¢(vo) is the number of times the equivalence class of (7o;7,6) arises
from a pair (p,€). This differs from [Kottwitz 1990, 3.1] only in the description of
the index set. In §7 we show that (vo;7,8) is effective if and only if its Kottwitz
invariant a(vyo;7,6) is defined and equals 1, and so we obtain formula (3.1) of
[Kottwitz 1990):

o T(T (9) D Vi(€)) =
> clyo) - vol(T(Q\I(Af)) - O4(f7) - TOs(¢y) - Te(mo). (0.5)

a(yory,6)=1

Although the derivation of (0.5) from (0.1) is not contained in [Langlands and
Rapoport 1987], they do prove most of the results required for it.
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In §8 we briefly review results of [Kottwitz 1990] concerning the stabilization of
(0.1).

In three appendices we provide background material for the rest of the article.

The notion of a groupoid (in schemes) is a natural generalization of that of a
group scheme, and affine groupoids classify general Tannakian categories in exactly
the same way that affine group schemes classify neutral Tannakian categories. In
Appendix A we review the theory of groupoids, and we state the main theorems of
Tannakian categories.

Throughout the paper, we have used results of Kottwitz (extending earlier results
of Tate and Langlands) concerning the cohomology of reductive groups. In proving
his results, Kottwitz used Langlands’s theory of the dual group, but recently Borovoi
has shown that it is possible to give a more direct derivation of slightly stronger
results by using the cohomology of “crossed modules”. In Appendix B we derive
the results from this point of view.

Finally in Appendix C, we explain the relation of the problem of computing
the zeta function of a local system V on a Shimura variety (defined in terms of
intersection cohomology) to finding 3=, Tr(7 (9)™|V,()).

History. Although important work had been done earlier in special cases by
Eichler, Kuga, Ihara, Shimura, and others, Langlands was the first to attempt to
understand the zeta function of a Shimura variety in all generality. In his Jugen-
traum paper [Langlands 1976], Langlands stated a conjecture describing Sh,(F).
While this was a crucial first step, the conjecture did not succeed in describing
the isomorphism class of the triple (Sh,(F), ®, x)—roughly speaking, it grouped
together terms on the right hand side of (0.1) corresponding to locally isomorphic
¢’s—and, in fact, was too imprecise to permit passage to (0.5). Moreover, it was
based on the study of examples rather than a heuristic understanding of the gen-
eral case, which is perhaps why it required successive corrections [Langlands 1977,
p1299; Langlands 1979, p1173]. The conjecture of Langlands and Rapoport removes
both these defects: it does give a precise description of the isomorphism class of
(Shy(F), ®, x) and, as is demonstrated in this article, it is sufficiently strong to
imply (0.5); moreover, as we noted above, the general form of the conjecture is sug-
gested by Deligne’s philosophy that Shimura varieties with rational weight should

be moduli varieties for motives.?

2This philosophy is now a theorem for Shimura varieties of abelian type (this class excludes
only those defined by groups containing factors of type Eg, E7, or certain groups of type D);
see [Milne 1991c¢], which also shows that, for Shimura varieties of abelian type, the conjecture of
Langlands and Rapoport is a consequence of other standard conjectures. I should also mention
that another very important motivation for Langlands and Rapoport was their desire to include
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In 1974 Langlands sent Rapoport a long letter outlining a proof of his Jugend-
traum conjecture for certain Shimura varieties of PEL-type—since these varieties
are moduli schemes for polarized abelian varieties with endomorphism and level
structure, one has a description of Shy(F) in terms of the isomorphism classes of
such systems over F. At the time of the Corvallis conference (1977) it was believed
that the outline could be completed to a proof, but this turned out to be impossible,
and the conjecture was not proved, even in the case of the Siegel modular variety,
for more than ten years.?

In the intervening period, Zink obtained a number of partial results. For ex-
ample, he proves in [Zink 1983] that, for a Shimura variety of PEL-type, every
isogeny class in the family parametrized by the variety over F lifts to an object in
characteristic zero that is in the family and of CM-type.

In his paper [Langlands 1979], Langlands assumed his Jugendtraum conjecture,
and showed that the zeta function of a Shimura variety defined by a quaternion
algebra over a totally real field is an alternating product of automorphic L-functions.

In a series of papers, Kottwitz made far-reaching extensions of the work of Lang-
lands. Starting from Langlands’s original conjecture, he was led to a conjecture for
the order of Sh,(FF,) of the same general shape as (0.5) [Kottwitz 1984b]. Later,
he introduced the Kottwitz invariant a(fyo;'y,é)' of a triple, which, in his talk at
the 1988 Ann Arbor conference [Kottwitz 1990, 3.1], allowed him to formulate his
conjecture (0.5). In the same talk he showed that, if one assumed some standard
conjectures in the theory of automorphic representations, most notably the funda-
mental lemma, then it was possible to stabilize (0.5), i.e., put it in a form more
appropriate for comparison with the terms arising (via the trace formula) from the
zeta function (see §8 below). Finally he proved that (0.5) holds for Siegel modular
varieties.

One difficulty Kottwitz had to overcome in proving (0.5) for Siegel modular va-
rieties was that of giving an explicit description of the polarized Dieudonné module
of the reduction modulo p of an abelian variety of CM-type—he needed this to
show that the triple (v0;7, ) arising from a polarized abelian variety over F has
Kottwitz invariant 1, and therefore contributes to the right hand side of (0.5) (cf.
[Kottwitz 1990, 12.1]). Later Wintenberger was to clarify this result by obtaining

the case of mild bad reduction; this aspect of their work will be ignored throughout the article.

3The author, then a novice in the field of Shimura varieties, had the misfortune to be asked
to explain to the Corvallis conference Langlands’s letter in the case of a Shimura variety defined
by a totally indefinite quaternion algebra over a totally real field. Happily, for reasons to do with
the nonexistence of L-indistinguishability, this case is easier than that of a general PEL-variety,
and the articles [Milne 1979a; 1979b] contain a complete proof of Langlands’s conjecture for this
case, albeit one based more on the theorem of Tate and Honda than on Langlands’s letter.
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a similar statement for a CM-motive and all its Hodge cycles [Wintenberger 1991},
and the statement can now be regarded as a rather immediate consequence of the

theory of Fontaine.*

Kottwitz’s proof of (0.5) did not suggest a proof of conjecture (0.1) of Langlands
and Rapoport, and in fact it was not until two years later that this stronger result
was obtained [Milne 1991a]. In their paper, Langlands and Rapoport had proved
(0.1) for the Siegel modular variety, but only under the assumption of Grothen-
dieck’s standard conjectures and the Tate conjecture for varieties over finite fields,
and the Hodge conjecture for abelian varieties. The main idea in [Milne 1991a] is to
construct explicitly a groupoid from a polarized abelian variety over F using only
the polarization and the endomorphisms of the variety (rather than all its algebraic
cycles), and to show that this is a sufficiently fine object to obtain a proof of (0.1)
without assumptions.

Comments. One may ask why we should bother with (0.1) since (0.5) is all one
needs for the zeta function. The simplest answer is that (0.1) is the stronger result,
and hence the more challenging problem, but there are more intelligent responses.

First, the definition of the canonical model of a Shimura variety is indirect. In
particular, it provides no description of the points of the variety with coordinates
in the fields containing the reflex field, and in general we have no such description.
From the point of view of the geometry of the Shimura variety, (0.1) gives a re-
markably precise description of the points of the Shimura variety in finite fields,
and it suggests a similar description for the points in any local field containing the
reflex field. The formula (0.5) has no such direct geometric significance, and suffers
from the same defect as Langlands’s original conjecture in being a sum over locally
isomorphic objects whereas one wants a finer sum over globally isomorphic objects.

Second, in the theory of Shimura varieties one typically proves a statement
for some (small) class of Shimura varieties, and extends it to a larger class by
the intermediary of connected Shimura varieties. Formula (0.5) seems to be badly
adapted for this approach whereas it should work well for (0.1).

Third, as was mentioned above, it has been proved that, for Shimura varieties
of abelian type whose weight is defined over Q, (0.1) follows from other standard
conjectures. For me, this is the most compelling evidence for (0.1), and, when
combined with the results of this article, also the most compelling evidence for

(0.5).

4However, the finer result of [Reimann and Zink 1988] has not yet been obtained from this
point of view.
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In one change from [Langlands and Rapoport 1987]%, T use throughout the lan-
guage of “groupoids” rather than “Galois-gerbs”. In the author’s (not so humble)
opinion, the first is the correct notion, and the second should be expunged from the
mathematical literature.

Throughout the paper I have assumed that the weight of the Shimura vari-
ety is defined over Q. Presumably everything holds mutatis mutandis without
this assumption if one replaces the pseudomotivic groupoid with the quasimotivic
groupoid, but I haven’t checked this. Also, as mentioned above, unlike Langlands
and Rapoport, I have confined myself to the case of good reduction.

This article is largely expository; the notes at the end of each section give infor-
mation on sources. My main purpose in writing it has been to make the beautiful
ideas in [Langlands and Rapoport 1987] more easily accessible and to explain their
relation to the (equally beautiful) ideas in [Kottwitz 1990].

Notations. Reductive groups are always connected. For such a group G, Gder
denotes the derived group of G, Z(G) denotes the centre of G, G* =4 G/Z(G) de-
notes the adjoint group of G, and G®P =4 G/ G is the maximal abelian quotient
of G. For any finite field extension k D kg and reductive group G over k, Res, ko G
denotes the group scheme over ko obtained from G by restriction of scalars. We
write (Gm)k/k, for Resg ko Gm. Also

Ker'(Q,G) = Ker(H(Q, G) — I, H (Q¢, G))

(product over all primes £ of Q, including p and oo).

The expression (G, X) always denotes a pair defining a Shimura variety (see §1).
We usually denote the corresponding reflex field E(G,X) by E, and v is a fixed
prime of E dividing a rational prime p and unramified over p.

We denote by Q? the algebraic closure of Q in C, and by Q;' an algebraic
closure of FE,; Q" is the maximal unramified extension of Q, contained in Qg‘.
The residue field of Q" C Q;’,‘ is denoted by F, and x(v) C F is the residue field
of E at the prime v. We fix an extension of E < E, to an embedding Q¥ Q;'.
We often use the following numbering;:

m=[Ey: Qp] = [6(v): Fp], 7=[Fg:k(v)], n=mr=[F,:F,

5The reader of [Langlands and Rapoport 1987 should be aware that throughout, including
in the title, they use “gerb” where they should use “Galois-gerb”; the two concepts are not the
same, and they should not be confused. In particular, the authors do not determine the gerb
conjecturally attached to the category of motives over F.
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For a perfect field k, W (k) is the ring of Witt vectors of k and B(k) is the field
of fractions of W(k). When k =F, we usually drop it from the notation. With the
conventions of the last paragraph, we have B(F) D Q)" and E, = B(k(v)).

The Frobenius element = — z? of Gal(F/F,) is denoted by o. We also use & to
denocte the elements corresponding to o under the canonical isomorphisms

Gal(F/E,) ~ Gal(Q™"/Q,)) ~ Gal(B(F)/B(E,)).

The ring of finite adeles 7 ® Q is denoted by Ay, and the ring of finite adeles
with the p-component omitted is denoted by A%; thus Ay = A% x Q,.

The Artin reciprocity maps of local and global class field theory are normalized
so that a uniformizing parameter is mapped to the geometric Frobenius element.
Thus if xcyc: Gal(Q*/Q) — 7> is the cyclotomic character, so that 7¢ = (Xev<(7)
for ¢ a root of unity in Q®, then recg(xeyc(7)) = 7|Q?P.

Complex conjugation on C (or a subfield) is denoted by 2z — z or by «. We
often write [*] for the equivalence class of * or (x), and we often use = to denote
a canonical isomorphism.

Finally we note that in §1 we correct a fundamental sign error in [Deligne 1979—
see (1.10)]. Thus our signs will differ from papers using Deligne’s paper as their
reference. '

1. SHIMURA VARIETIES
We review some of the theory of Shimura varieties.

The torus S. We write S for the torus (G,,)c/r over R; thus
SR)=C*,  S(C)=C*xC*.

The last identification is made in such a way that the map C* <« C* x C* in-
duced by R — C is z — (2,Z). Let G be an algebraic group over R. With any
homomorphism h: § — G there are associated homomorphisms,

Hh Gm_)G(Ca thC(zv 1)) ZEGm(C):CX’

and
wh: Gm — G, k()7 reGL(R)=R* cC*=8(R),

(the wetght homomorphism). To give a Hodge structure on a real vector space
V is the same as to give a homomorphism h: S — GL(V): by convention, h(z) acts
on VP9 as multiplication by 27Pz79,
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Definition of a Shimura variety. The datum needed to define a Shimura vari-
ety is a pair (G, X) comprising a reductive group G over Q and a G(R)-conjugacy
class X of homomorphisms S — Gy satisfying the following conditions:

(SV1) for each h € X, the Hodge structure on the Lie algebra g of G defined by
Adoh:S — GL(gr) is of type {(1,-1),(0,0),(-1,1)};

(SV2) for each h € X, ad h(i) is a Cartan involution on G&%;

(SV3) G34 has no factor defined over Q whose real points form a compact group;

(SV4) G2P splits over a CM-field.

We write hy, iz, and w; for the homomorphisms corresponding to a point z € X;
thus hyy = adgoh, for g € G(R).

The set X has a canonical G(R)-invariant complex structure for which the
connected components are symmetric Hermitian domains.

For each compact open subgroup K of G(Ay),

ShK(G,X) =df G(Q)\X X G(Af)/K

is a finite disjoint union of quotients of X by arithmetic subgroups. According
to Baily and Borel (1966), this space has a natural structure of a (nonconnected)
quasi-projective variety over C. The Shimura variety Sh(G, X) is the projective
system of these varieties, or (what amounts to the same thing) the limit of the
system, together with the action of G(Af) defined by the rule:

(z,0]-g=[z,a9], z€X, a,9€G(Ag).
The set of complex points of Sh(G, X) is
Sh(G, X)(C) = GQ\X x G(Af)/Z(Q)™,

where Z = Z(G) and Z(Q)~ is the closure of Z(Q) in Z(Ay) (see Deligne 1979,
2.1). In forming the quotient, G(Q) acts on the left on X and G(Ay), and Z(Q)~
acts only on G(Ay). Because of (SV4), the largest split subtorus of Zg is defined
over Q; if it is split over Q, then Z(Q) is closed in Z(Ay), and

Sh(G, X)(C) = G@\X x G(Ay).

Axiom (SV1) implies that the Hodge structure on g defined by Ad o h, has
weight zero for each z € X. Therefore w,(G,,) C Z(G), and w, is independent of
x—we write it wx, and refer to it as the weight of the Shimura variety.
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Examples of Shimura varieties. We list some Shimura varieties of interest.

Example 1.1. Let L be a finite-dimensional semisimple algebra over Q with an
involution *, and let V be a finite-dimensional vector space over Q endowed with
the structure of a faithful L-module and a nondegenerate skew-symmetric form 2
such that

Y(az,y) =¥(z,a’y), alla€clL, z,yeV

Let E be the centre of L, and let F be the subalgebra of E of elements fixed by *.
Fix a torus C such that

Gm C C C(Gm)r/gs

and define G to be the identity component of the group G’ of symplectic C-
similitudes:

G'(Q) ={a € GLL(V) | ¥(az, ay) = (v(a)z,y), some v(a) € C(Q)},
={ae€ GLL(V)|a* a€ CQ)}

Then a > v(a) = a* - a defines a homomorphism of algebraic groups v: G — C.
Assume there is a homomorphism ho: S — Gpg such that the Hodge structure
(V, ho) is of type {(—1,0),(0, —1)} and 2wy is a polarization for (V| hg). Then the
involution x is positive, and when we take X to be the set of G(R)-conjugates of
ho, the pair (G, X) satisfies the axioms for a Shimura variety (see Deligne 1971a,
4.9). A Shimura variety arising in this way from an algebra with involution and a
symplectic representation of the algebra is said to be of PEL-type. Deligne (ibid.
§5) gives a description of the groups G that occur in this way. For Shimura varieties
of PEL-type, the weight is automatically defined over Q.

Example 1.2 (Special case of (1.1)). Asin (Gordon 1991, §6), let E be a CM-field
of degree 2g over Q with F as its largest totally real subfield, let V' be an E-vector
space of dimension 3, and let J be an E-valued Hermitian form on V with signature
(2,1) at r infinite primes of F and signature (3,0) at the remainder. Assume r > 1.

Take L in (1.1) to be E with complex conjugation as the involution. The subfield
of E fixed by the involution is F'. Regard V' as a vector space over Q, and take
to be the imaginary part of J. Finally take C = (Gy)p/q. For the obvious choice
of hg, the construction in (1.1) leads to the Shimura variety Sh(G,X) discussed
in (Gordon 1991, §6). In the special case that ¢ = 1, Sh(G,X) is the Picard
modular surface (ibid. §1-§5). The derived group of G is simply connected and
G?* = (Gm)Eg/g-
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Example 1.3. Let F be a totally real number field, and let L be a quaternion
algebra over F' that splits at at least one real prime of F. Let G be the algebraic
group GL;(L) over Q. Then Gg = [[ G, where v runs over the real primes of F
and G, is isomorphic to GLy(R) or GL¢(H) according as L does or does not split
at v. Define ho to be the homomorphism § — Gg such that the projection of
ho(a + bi) to G4(R) is (Z _ab> or 1 in the two cases. When we take X to be the
set of G(R)-conjugates of ho, the pair (G, X) satisfies the axioms for a Shimura
variety. The weight is defined over Q if and only if L splits at all real primes of F,
in which case the Shimura variety is of PEL-type.

Example 1.4. (Special case of (1.1)) By a symplectic space over Q, I mean a
vector space V over Q together with a nondegenerate skew-symmetric form 1 on
V. The group GSp(V, ) of symplectic similitudes has rational points,

{a e GL(V) | ¢(ax,ay) = v(a)y(z,y), some v(a) € Q*}.

The Siegel double space S consists of all rational Hodge structures on V of type
{(=1,0),(0,—-1)} for which +2mi% is a polarization. It is a GSp(R)-conjugacy
class of maps S — GSpg, and the Shimura variety Sh(GSp, S) is called the Siegel
modular variety (see [Deligne 1971b, 1.6; 1979, 1.3.1]).

Example 1.5. A Shimura variety Sh(G, X) is said to be of Hodge type if there is
a symplectic space (V1)) and an injective homomorphism G < GSp(V, 1) carrying
X into §. Thus a Siegel modular variety is of Hodge type, and a Shimura variety
of PEL-type is of Hodge type if the group C in its definition is taken to be G,,.

A Shimura variety Sh(G, X) is of Hodge type if and only if the following condi-
tions hold (see [Deligne 1979, 2.3.2]):

(i) the weight is defined over Q;
(i) wx(Gy) is the only split subtorus of Z(G)g;

(i) there is a faithful representation &: G — GL(V) of G such that (V,€ o h,)
is of type {(—1,0),(0,—-1)} for all z € X.

Example 1.6. Let T be a torus over Q that is split by a CM-field. For any
homomorphism h: S — T, (T, {h}) satisfies the conditions (SV), and so defines a
Shimura variety. Its points are

Sh(T, {h}) = T(As)/T(Q)".
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The reflex field. For any algebraic group G over a field k, and any field &’
containing k, write C(k’) for the set of G(k)-conjugacy classes of homomorphisms
G — Gir:

C(k") = Hom(G,,, Gr/)/G(K).

Note that a map k' — k" defines a map C(k') — C(k”); in particular, when k' is
Galois over k, Gal(k’/k) acts on C(k').

Proposition 1.7. Let G be a reductive group over a field k of characteristic
Z€ro.

(a) For any maximal k-split torus S in Gy, with k-Weyl group Q, the map
X.(8)/Q — C(k) is bijective.

(b) If G is quasi-split over k, then C(k) = C(k*)Gal(*/k)

(c) If G is split over k (for example, if k is algebraically closed), then the map
C(k) — C(k') is a bijection for any k' D k.

Proof.  The first two statements are proved in [Kottwitz 1984b, 1.1.3]—the hypoth-
esis there that G4 is simply connected is not used in the proof of (a) or (b), and
the hypothesis that G is quasi-split is not used in the proof of (a). The remaining
statement follows (a). O

Now consider a Shimura variety Sh(G, X), and let ¢(X) be the G(C)-conjugacy
class of homomorphisms G,, — Gc¢ containing p, for £ € X. According to (c)
of the proposition, ¢(X) corresponds to an element ¢(X)ga of C(Q*). The Galois
group Gal(Q*/Q) acts on C(Q*), and the subfield of Q* corresponding to the
stabilizer of ¢(X)ga is defined to be the reflex field E(G, X) of Sh(G, X). Thus
7 € Gal(Q¥/Q) fixes E(G, X) if and only if it fixes ¢(X)gw, and this condition
characterizes E(G, X).

The reciprocity map. Consider a pair (T, z) as in (1.6). The reflex field E =4
E(T,z) is the field of definition of the cocharacter y, of T. On applying Resg /Q to
the homomorphism p,: G,g — Tg, and composing with the norm map, we obtain
a homomorphism

R x N
N;: Resg/qGmE Te/abe, Resg/oTE B TLNG o}

For any Q-algebra R, this gives a homomorphism

N;: (E® R)* - T(R).
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Let T(Q)™ be the closure of T(Q) in T'(Af). The reciprocity map
(T, z): Gal(E**/E) — T(As)/T(Q)~

is defined as follows: let 7 € Gal(E?P/E), and let s € A} be such that recp(s) = ;
WIite § = S0o+S7 With soo € (E®R)™ and sy € (E®Ay)™; then (T, z)(7) = Nu(sy)
(mod T(Q)7).

The canonical model of Sh(G, X) over E(G,X). A special pair (T,z) in
(G,X) isatorus T C G together with a point x of X such that h, factors through
Tk. Clearly E(T,z) D E(G,X).

By a model of Sh(G, X) over a subfield k¥ of C, we mean a scheme S over
k endowed with an action of G(Ay) (defined over k) and a G(Aj)-equivariant
isomorphism Sh(G, X) — S®;C. We use this isomorphism to identify Sh(G, X)(C)
with S(C).
Theorem 1.8. There exists a model of Sh(G, X) over E(G,X) with the follow-
ing property: for all special pairs (T, z) C (G,X) and elements a € G(Ay), the
point [z, a] is rational over E(T,z)*® and T € Gal(E(T, x)**/E(T, z)) acts on [z, q)
according to the rule

r[x,a] = [z,a-r()], where r = (T, z).

The model is uniquely determined by this condition up to a unique isomorphism.

Proof. The uniqueness is proved in [Deligne 1971b]. For most Shimura varieties,
the existence is proved in [Deligne 1979], and for the remainder it is proved in [Milne
1983]. 0

The model determined by the theorem is called the canonical model of
Sh(G,X). We now use Sh(G, X) to denote the canonical model of the Shimura
variety over E(G, X), or its base change to any field k O E(G, X).

Example 1.9. Let h: S — G,,g be the map z +— 2Z. The Shimura variety
Sh(G,n, {h}) has complex points

Sh(Gm, {h})(C) = Q*\A.

The reflex field is the field of definition of up = id: G, — Gy, which is Q. The
reciprocity map 1 = (G, h): Gal(Q**/Q) — A? /Q* can be described as follows:
let 7 € Gal(Q??/Q), and let s € AX be such that recg(s) = 7; then r(r) = s¢. The
canonical model of Sh(G,,,, {h}) is the (unique) scheme S of dimension zero over Q
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such that, for any algebraically closed field k containing Q, S(k) = QX\A}( with
7 € Gal(k/Q) acting as multiplication by 7(7|Q?"). Here Q" denotes the largest
abelian extension of Q contained in k; the expression 7(7|Q?) makes sense because
Gal(Q?*"/Q) is independent of k.

We verify that this is the moduli variety for level structures on the Tate motive
Q(1). Let k be an algebraic extension of Q, and let k* be an algebraic closure of
k. Define

A7(1) = (impn (b)) @2 Q

(étale realization of the Tate motive). It is a free As-module of rank 1, and
Gal(k?/k) acts on it through its action on the roots of unity. More explicitly,
7 € Gal(k® /k) acts on As(1) as multiplication by xcyc(7), Where xeyc is the cyclo-
tomic character (see Notations).

A level structure on Q(1) defined over k is an isomorphism n: Ay — Ag(1)
of Gal(k* /k)-modules. Since Gal(k® /k) acts trivially on Ay, a level structure can
exist only when k contains all roots of 1, i.e., when k D Q?P. An isomorphism
of level structures a: n — 7 is an automorphism a of Q(1) (element of Q%)
such that ' = aon. Let M(k) be the set of isomorphism classes of level structures
on Q(1) defined over k. When k is algebraically closed, there is a canonical iso-
morphism M (k) —Sh(G,,, {h})(k): choose an isomorphism 3: Q(1)p — Q where
Q(1)p denotes the vector space 2miQ (Betti realization of Q(1)); on tensoring this
with Ay we obtain an isomorphism 3 ® 1: Af(1) = Ay ® Q(1)p — Ay. For any
level structure 7, (8®1) on is an automorphism of Ay, i.e., an element of A}‘. The
class of this element in Q* \A}< is independent of the choice of 3, and depends only
on the isomorphism class of . Thus we have a canonical bijection:

M(E) = Q*\AF =Sh(Gy, {h}) (k).

The fact that this commutes with the actions of Gal(k* /Q) comes down to the
formula recalled in the Notations:

recg(Xeye(T)) =T |Qab-

Remark 1.10. The above definition of the reciprocity map r(T,z) is correct.
There is a sign error in the definition in [Deligne 1979], 2.2.3, which is repeated in
all subsequent papers using that paper as reference including, alas, {Milne 1990].
(To verify that the sign is correct, it is necessary to trace through the signs in the
theory of complex multiplication, but the above example provides rather convincing
evidence of its correctness.)
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Hyperspecial subgroups. We review part of the theory of hyperspecial sub-
groups that will be needed later in the article.

To a reductive group G over a nonarchimedean local field F', Bruhat and Tits
attach a building B(G, F) [Tits 1979]. This is, in particular, a set with a left action
of G(F). Certain points of B(G, F) are said to be hyperspecial (ibid. 1.10.2),
and the stabilizer in G(F) of such a point contains a maximal compact subgroup
of G(F), called the hyperspecial subgroup of G(F) attached to the point. These
subgroups can be characterized independently of the building as follows: a subgroup
K < G(F) is hyperspecial if and only if there is a smooth group scheme Go over the
ring of integers O in F whose generic fibre is GG, whose special fibre is a connected
reductive group over the residue field, and whose group of O-valued points is K
(ibid. 3.8.1). Hyperspecial subgroups exist in G(F) if and only if G is unramified
over F, i.e., is quasi-split over F and splits over an unramified extension of F' {ibid.
1.10.2).

Let z be a hyperspecial point of B(G, F), and let K = Go(O) be the correspond-
ing hyperspecial group. If F’ is an unramified extension of F, then there is a canoni-
cal map B(G, F) — B(G, F') which is equivariant relative to G(F) — G(F'). More-
over, z maps to a hyperspecial point z’ in B(G, F’) whose stabilizer is K’ = Go(0')
where O’ is the ring of integers in F’.

For an unramified extension F’ of F, write V(F’) for the G(F’)-orbit of the
image of z in B(G,F’). Thus V(F') = (G(F')/Go(O")) - '. Those wishing to
avoid thinking about the building can identify V(F') with G(F')/Go(0’). Note
that there is a surjection

V(F') x V(F') = Go(ON\G(F')/Go(O"), (gz,9'v) = [g'™" - 4,

whose fibres are the orbits of G(F') acting on V(F') x V(F").

By definition, the building B(G, F) is a union of apartments corresponding to the
maximal F-split tori in G. Suppose now that G is split over F. If the hyperspecial
point corresponding to K = Gp(O) lies in the apartment corresponding to the
torus S, then K contains a set of representatives for the Weyl group 2 of .S, and
there is a decomposition:

G(F)=K-S(F)- K,
(Cartan decomposition, ibid. 3.3.3). Moreover, there is a bijection
Xo(8)/2— K\G(F)/K, p > [u(@)]-
On combining this with the bijection (1.7a)

X.(9)/Q — C(F) (G(F)-conjugacy classes of cocharacters of Gr)
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and the above surjection, we obtain a canonical map
inv: V(F) x V(F) — C(F)

whose fibres are the orbits of G(F). It has the following description: inv(gz, ¢'z) =
(1] if p factors through S and

[9'"'g] = [u(p)] in K\G(F)/K.

(See also [Langlands and Rapoport 1987, p168] and [Kottwitz 1984b, 1.3.3.]

Notes. There is no satisfactory detailed exposition of the theory of Shimura va-
rieties. Brief accounts can be found in [Deligne 1971a; 1971b; 1979], and [Milne
1990]. For more details on buildings, see [Tits 1979].

2. INTEGRAL CANONICAL MODELS

In the last section, we explained the notion of a canonical model of a Shimura
variety defined over its reflex field. Here we introduce the notion of an integral
canonical model defined over the ring of integers in a completion of the reflex field,
without which the problem of describing the points modulo p is not well-posed.®

Definitions. Fix a prime number p and a prime v of E(G, X) lying over it, and
write E, for the completion of E(G,X) at v. Fix also a compact open subgroup
K, of G(Q,), and let

Sh, (G, X) = Sh(G, X)/ K.

It is a scheme over E(G, X) with a continuous action of G(A%). Let L be a finite
extension of E,, and let Oy, be the ring of integers in L.

Definition 2.1. A model of Sh,(G, X) over Oy, is a scheme S over O together

with a continuous action of G(A%) and a G(A%})-equivariant isomorphism

v: S®o, L — Sh,(G, X)L

Recall [Deligne 1979, 2.7.1] that to say that S is a scheme over O with a
continuous action of G(A%) means that S is a projective system of schemes

5This lacuna has not, of course, prevented the problem being posed. It is the lack of a good
notion of an integral canonical model in the case of bad reduction that has discouraged the author
from considering that case.
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(SK) over Oy, indexed by the compact open subgroups K of G(A%), and that there
is an action p of G(A’;) on the system defined by morphisms

pr(g): Syxg-1 — Sk.

Moreover pk (k) is the identity if k € K. Therefore, for K’ normal in K, the
pk' (k) define an action of the finite group K/K' on Sk, and it is required that
Sk /(K/K') = Sk. The system is determined by its limit S’ = }i_r__nK Sk together
with the action of G(A%) on §'; in fact Sk = S'/K. Therefore, we usually do not
distinguish S = (Sk) from its limit S’.

Definition 2.2. A model S = (Sk) of Sh,(G, X) over Oy, is said to be smooth
if there is a compact open subgroup Ky of G’(A’}) such that Sk is smooth over O
for all K ¢ Ky, and Sk is étale over Sk for all K' ¢ K C Kj.

Remark 2.3. Assume that Sk is flat over Oy for all K; then (Sk) is smooth if
and only if there is a compact open subgroup Kp of G(A’}) such that the special
fibre of Sk — Spec Oy is a smooth scheme over k(v) for all K C K, and the
special fibre of S+ — Sk is étale for all K’ C K C Kj.

Proposition 2.4. Let S = }iﬂlS}( be a smooth model of Sh,(G,X) over Op;
then S is a regular scheme.

Proof. Let s € S; we have to show that R =4 O, is a regular local ring. Clearly
R= 11_1'[)1 Ryx where Rk is the local ring at the image of s in Sk, and the limit is
taken over all K contained in Kj.

Set Ry = Rg,. Then clearly Ry C R C R{® where R} is a strict Henselization
of Ry. To show that R is Noetherian, we use the following criterion: a ring R is
Noetherian if every ascending chain

ay Cazx Cag C ...

of finitely generated ideals becomes constant. Since R§P is Noetherian, the chain of
ideals
Cl1R%h C GQRSh C agRSh C ...

becomes constant, and so it suffices to show that aR$" N R = a for each finitely
generated ideal a of R. Clearly aR$P "R D a. Let ay,... ,a, generate a, and let
r € aR§" N R. After possibly replacing Ko with a smaller compact open subgroup,
we can assume that ai,... ,a,,7 € Rp. Let ap be the ideal generated by ay, ..., a,
in Rg. As Ry is Noetherian, Rf)h is faithfully flat over it, and so uoRBh N Ry = ag.
But agRE" = aR§", and so agR§P N Ry contains 7, which implies that r € a.
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Thus R is a Noetherian local ring, and RP is its strict Henselization. Therefore
dim R = dim R? = dimRy.

Because Ry is unramified over Ry for all K, so also is R, and so any set of
generators for the maximal ideal in Ry also generates the maximal ideal in R. This
proves that R is regular. d

Definition 2.5. A model S of Sh,(G, X) over Oy, is said to have the extension
property if, for every regular scheme Y over Oy, such that Y7, is dense in Y, every
L-morphism Y7, — S extends uniquely to an Op-morphism ¥ — S.

Remark 2.6. Consider an inclusion (G,X) — (G',X’) of pairs satisfying the
axioms (SV1-4). Let K, be a compact open subgroup of G'(Q,), and let K, =
K, NG(Q,). Then E(G,X) D E(G',X"), and there is a closed immersion

Sh,(G, X) < Sh, (G, X')

over E(G, X), where Sh,(G, X) and Sh,(G’, X') are the quotients of the canonical
models of Sh(G, X) and Sh(G’, X’) by K, and K|, respectively. Let v be a prime
of E(G, X) lying over p. If Sh,(G’, X') has a model S’ over O, with the extension
property, then the closure of Sh,(G, X) in S’ has the same property.

Langlands [Langlands 1976, p411], suggests that when K, is hyperspecial and
Sh, (G, X)k is (proper and) smooth over E,, then it should extend to a (proper
and) smooth scheme over O,, but offers no suggestion of how to characterize the
extended model. We suggest such a characterization.

Conjecture 2.7. When K, is hyperspecial, Sh,(G, X) has a smooth model over
O, with the extension property.

Proposition 2.8. There is at most one model of Sh,(G,X) over O, satisfying
the conditions of (2.7).

Proof. Let S and S’ be two such models. Because S’ has the extension property
and S is regular, the morphism

r—1
Sg, > Shy(G, X)g, +— Sp,

extends uniquely to a morphism S — S, and it is easy to see that this is an
isomorphism compatible with the actions of G(A’}) and the maps ~. |
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Definition 2.9. A smooth model Sh,(G, X), of Sh,(G, X) over SpecO, with
the extension property will be called an ¢ntegral canonical model.

Thus the integral canonical model is uniquely determined up to a unique iso-
morphism (if it exists).

Existence of canonical models: the Siegel modular variety. Let Sh(G,X)
be the Siegel modular variety defined by a symplectic space (V, 1) over Q (see 1.4).
Let V(Z,) be a Z,-lattice in V(Q,) such that the discriminant of the restriction of
Y to V(Z,) is a p-adic unit. Then

K,=4{9€GQ)|9V(Zy) =V(Zy)}

is a hyperspecial subgroup of G(Q,), and we set Sh,(G, X) = Sh(G, X)/K,.

Theorem 2.10. The Siegel modular variety Sh,(G,X) has a canonical model
over Zy.

More precisely, we show that the moduli scheme over Z, constructed by Mum-
ford is a canonical model.

Proposition 2.11. Let Y be a normal scheme, and let U be a dense open sub-
scheme of Y. If A and B are abelian schemes on Y, then every homomorphism
@: AlU — B|U extends uniquely to a homomorphism A — B.

Proof. The uniqueness of the extension follows from fact that B is separated over
Y. In proving the existence, we can assume Y to be affine and integral, say Y =
Spec R, and that ¢ is defined over some open subset Spec Ry, b € R. Every ring is
a union of excellent rings, and the normalization of an excellent ring is Noetherian.
Hence R = UR, with R, Noetherian and normal. For « sufficiently large, b will
lie in R, and ¢ will have a model o over Spec(Rq)b. Now we can apply [Faltings
and Chai 1990, 1.2.7], to obtain an extension of ¢, to Spec R,, and this gives an
extension of ¢ to Spec R. O

Corollary 2.12. Let Y O U be as in the Proposition, and let A be an abelian
scheme over U. If A extends to an abelian scheme on Y, then it does so uniquely.

We next consider the existence of such an extension. Let Y be an integral
scheme and let A be an abelian scheme over a dense open subscheme U of Y. Let
n be the generic point of Y, and let T;(A,;) be the Tate module of A,. There is
an action of the étale fundamental group = (U, n) on T¢(A,), and if A extends to
an abelian scheme on Y, then this action factors through the quotient m;(Y,7n) of
m1(U,n). This statement has a converse.
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Proposition 2.13. Let Y be an integral regular scheme with generic point 7.
Assume that x(n) has characteristic zero, and let A be an abelian scheme over
a dense open subscheme U of Y. If the monodromy representation m1(U,n) —
Aut(TyA,) factors through m1(Y,n), then A extends to an abelian scheme on Y.

Proof. Because of (2.12), there will be a largest open subscheme U of Y such that
A extends to U. Suppose U# Y, andlet ye Y,y ¢ U.

If Oy has dimension 1, then it is a discrete valuation ring. Its field of fractions is
%(n), and the assumption implies that the action of Gal(xk(n)?!/k(n)) on Ty A factors
through m(Spec O,,n). Now the Néron criterion of good reduction [Bosch et al.
p183] implies that A, extends to an abelian scheme on Spec Oy, which contradicts
the maximality of U.

Therefore Y — U has codimension > 2 in Y, and [Faltings and Chai 1990, V.6.8]
shows that A extends from U to the whole of Y. O

Let A be an abelian scheme over a scheme S, and let AY be the dual abelian
scheme. An invertible sheaf £ on A defines a morphism A(£): A — AV. A polar-
tzation of A is a homomorphism A: A — AV that is locally (for the étale topology
on S) of the form A(L) for some ample invertible sheaf on A.

Proposition 2.14. Let A be an abelian scheme on a normal scheme Y, and let
A: AlU — AY|U be a polarization of A|U for some dense open subset U of Y.
Then X extends to a polarization of A.

Proof. We know (2.11) that A extends to a homomorphism A: A — AV, and the
argument [Faltings and Chai 1990, p6: see 1.10b] shows that the extended A\ will
be a polarization. O

We now prove the theorem. Choose a Z-lattice V(Z) in V such that V(Z)®Z, =
V(Z,), and for each N relatively prime to p, let

K(N) ={g € G(A}) | g acts as 1 on V(Z)/NV(Z)}.

Then (over C) Sh,(G,X)/K(N) represents the functor that sends a C-scheme Y
to the set of isomorphism classes of triples (A, A,n) where A is an abelian scheme
over Y, A is a polarization of A (taken up to a constant), and 7 is a level-N
structure on A, i.e., an isomorphism V(Z)/NV(Z) — Ay. Mumford (1965) shows
that the same functor is representable by a scheme S(N) over Z(py. The family
(S(N)g) is a canonical model for Sh,(G, X) over @, and I claim that the family
(S(N)) is an integral canonical model for Sh,(G,X) over Z,. Since Mumford
shows it to be smooth, it remains to prove that it has the extension property.
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Consider a regular scheme Y over Z, such that U =4 Yg, is dense in Y. A
morphism a: U — Sh,(G, X) can be regarded as a projective system of morphisms
an: U — Sh,(G,X)/K(N), and the an’s define a projective system of triples
(A,A\,nn) on U. Here (A, ) is independent of N, and 7y is a level N-structure.
The existence of level £™-structures for every m implies that 71 (U,n) acts trivially
on Ty(A,). Therefore (2.13) implies that A extends uniquely to an abelian scheme
on Y, and (2.14) implies that A extends uniquely to a polarization of over Y.
Moreover, each level structure nny extends. The universal property of S(N) now
implies that ax extends uniquely to a morphism Y — S(N), and the inverse limit
of these morphisms is an extension of a to Y.

Further remarks.

2.15. Let Sh(G,X) be a Shimura variety of Hodge type. After (2.6) and (2.10)
we know that Sh,(G, X) has an integral model with the extension property.
To prove that the model is canonical, it remains to show that it is smooth.
If Sh(G, X) is of PEL-type, this can (presumably) be done by identifying
the model with a moduli scheme.

2.16. Consider the Shimura variety Sh(T,{h}) defined by a torus. In order for
T(Q,) to have a hyperspecial subgroup K, T must split over Qp", and
then

Ky = (X.(T) © 0X)010 /),

where O is the ring of integers in Qp". It follows from the definitions
that, for any compact open subgroup K? of G(A?), the canonical model of
Sh(T,{h})/KPK, is of the form Spec R with R a product of fields L; that
are unramified over E(T,{h}) at v. The integral closure in R of the ring of
integers in E(T,{h}), is an integral canonical model for Sh(T, {h}).

2.17. For Shimura varieties of abelian type, it should be possible to prove the
following result: choose an integral structure Gz on Gj; for almost all p,
K, =4 Gz(Z,) is a hyperspecial subgroup of G(Q,), and for almost all of
those p, Sh,(G, X) has a canonical model over O,.

In fact, one really needs something stronger than (2.7).

Conjecture 2.18. Assume K, is hyperspecial; for every sufficiently small com-
pact open subgroup K? of G (A?) there exists a smooth toroidal compactification of
Shy,(G,X)/K? that extends to a smooth compactification of the integral canonical
model.
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Notes. The material in this section is new.

3. THE PSEUDOMOTIVIC GROUPOID

The pseudomotivic groupoid is the groupoid (conjecturally) attached to the
category of motives over F. After discussing Weil numbers, we review the properties
that the category of motives over F is expected to have, and we deduce information
about the groupoid attached to the category. This motivates the definition of the
pseudomotivic groupoid. Finally, we construct the map from the pseudomotivic
groupoid to the Serre group that should correspond to the reduction of CM-motives
to characteristic p.

Weil numbers. Let g be a power of p. A Weil g-integer is an algebraic integer
m such that, for every embedding 7: Q[r] — C,

el = ¢'/2.

Two Weil numbers are said to be conjugate if they have the same minimum poly-
nomial over Q or, equivalently, if there is an isomorphism of fields Q[r] — Q[n’]
carrying 7 to 7’. The importance of Weil numbers is illustrated by the following two
theorems. Recall that, for a variety X over Fy, the Frobenius endomorphism
nx of X acts on X(F) as

(@o:zy:...)> (xd:af:...).

Theorem 3.1. If A is a simple abelian variety over Fy, then Endg, (4) ® Q is
a division algebra with centre Q[r4]. Moreover, w4 is a Weil q-integer, and the
map A — w4 determines a one-to-one correspondence between the set of isogeny
classes of simple abelian varieties over Fy and the set of conjugacy classes of Weil
g-integers.

Proof. The statement combines theorems of Weil, Tate, and Honda. a

Theorem 3.2. For any smooth complete variety X over F,, the characteristic
polynomial of mx acting on the étale cohomology group H*(X ®r, F, Q) has coef-
ficients in Z, independent of £ # p, and its roots are Weil q'-integers.

Proof. The statement combines theorems of Grothendieck and Deligne. a

Write W(q) for the subgroup of Q** generated by the Weil g-integers. Note
that every element of W (g) is of the form n/¢™ with = a Weil ¢-integer. If ¢’ is a
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power of ¢, say ¢’ = ¢, then = — 7™ is a homomorphism W (q) — W(¢'), and we
set

W(p™) = lim W(qg).
An element of W(q) will be referred to as a Weil number (for q).

The category of motives over F. Let k be an arbitrary field. For a smooth
projective variety X of pure dimension d, let Z"(X) be the Z-module of algebraic
cycles on X of codimension 7, and let C™(X) be the quotient of Z"(X) ® Q by
the subspace of cycles numerically equivalent to zero (i.e. such that (Z-2') =0
for all Z' € Z4"(X)). If Y is a second smooth projective variety over k, then
the elements of C4(X x Y) are called algebraic correspondences from X to Y
of degree zero. For example, the graph of a morphism from Y to X defines an
algebraic correspondence from X to Y of degree zero.

The category of correspondences CV°(k) has one object h(X) for each
smooth projective variety X over k, and a morphism from h(X) to h(Y) is an
algebraic correspondence of degree 0 from X to Y (see [Saavedra 1972, p384)).
Then X — h(X) is a contravariant functor, and CV°(k) acquires the structure of
a tensor category for which

MX)®h(Y) = h(X x Y),

and the commutativity and associativity constraints are defined by the obvious
isomorphisms

XxYmYxX, Xx¥xZ)=(XxY)xZ

On adding the images of projectors and inverting the Lefschetz motive, one obtains
the false category of motives M(k) over k (ibid. VI.4). This is a Q-linear tensor
category, but it can not be Tannakian because

dim h(X) = (A - A) = Y (~1) dim Hi(X),

which may be negative. In order to obtain a category that is (conjecturally) Tan-
nakian, we must define a grading on it and use the grading to modify the commu-
tativity constraint. For a general field, it is not proved that this is possible, but for
a finite field or its algebraic closure, the following proposition allows us to do it.

Proposition 3.3. Let X be a smooth projective variety over Fy. There exist
well-defined idempotents p* € End(h(X)) such that p'H(X) = HY(X) if H(X)
denotes £-adic (étale) cohomology, £ # p, or the crystalline cohomology.

Proof. Let Py(T) be the characteristic polynomial of 7x acting on H(X)—it is
known to lie in Z[T] and be independent of which cohomology theory we take.
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According to the Cayley-Hamilton theorem, P;(rx) acts as 0 on H*(X). Choose
PYT) € Q[T] such that

1, mod Py(T);

P = {0, mod P;(T) for j # i.

This is possible from the Chinese remainder theorem, because the P; have roots of
different absolute values and so must be relatively prime. Now take p* = Pi(rx).
0O

The last result allows us to define a grading on M(F,) such that
h(X) = ®h(X)}, h(X)' =Im(p)).

We can now modify the commutativity constraint in M(k) as follows: write the
given commutativity constraint

YMN: M®N - NQM,
as a direct sum,
PN = @Y, Yt MTQN® S N @ M,
and define
Ym N = B(=1)" ",

Now

dimh(X) =Y Hi{(X). (3.3.1)
In this way we obtain the category of motives Mot(F,) over F,.

Proposition 3.4. The category Mot(F,) is a semisimple Tannakian category
over Q.

Proof. Saavedra (1972), V1.4.1.3.5, shows that it is a Q-linear tensor category with
duals (i.e., satisfying A.7.2). It is obvious that End(1) = Q. Jannsen (1991) shows
that Mot(FF,) is a semisimple abelian category, and because the dimensions of its
objects are nonnegative integers (see 3.3.1), Deligne (1990), 7.1, shows that it is
Tannakian. g
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Conjecture 3.5. For each £ # p,o0, an algebraic cycle on X is numerically
equivalent to zero if it maps to zero in the £-adic étale cohomology of X ; similarly,
it is numerically equivalent to zero if it maps to zero in the crystalline cohomology
of X.

Remark 3.6. Conjecture (3.5) implies that there are fibre functors wy, all £ #
P, 00, and werys such that

we(h(X)) = H(X ®F,Q0),  werys(M(X)) = Heyys(X/W(Ey)) @ B(E),

for all smooth projective schemes X over F,.

We remark that similar constructions lead to a category Mot (F) of motives
over F; it is a Tannakian category over Q, and when Conjecture 3.5 is assumed for
projective smooth varieties over F, then there are fibre functors we, all £ # p, oo,
and werys-

Polarizations. Consider a Tannakian category T over a subfield k of R. For
an object X of T, a bilinear form on X is a mapping p: X ® X — 1. It is
nondegenerate if the map X — XV it defines is an isomorphism. The parity of
 is defined by the equation

(P(:Ev y) = So(yv E.'E).

Let u € End(X); the transpose u' of u with respect to ¢ is defined by

o(uz,y) = p(z,u'y).

The form ¢ is said to be a Weil form if ¢ is in the centre of End(X) and if for
all nonzero v € End(X), Tr(u - u') > 0. Two Weil forms ¢ and 1 are said to be
compatible if p & 1) is also a Weil form.

Now let Z be the centre of the band attached to T, and let ¢ € Z(R). Suppose
there is given, for each X in T, a compatibility class 7(X) of Weil forms on X
with parity €; we say that 7 is a polarization on T if, for all X and Y,

pen(X), venly) = poypenX@Y), ¢¢pecr(X®Y).

Example 3.7. Let V be the category of pairs (V, &) where V is a Z-graded vector
space over C and « is a semi-linear automorphism of V such that a? acts as (—1)™
on the n'" graded piece of V. Then V has a natural tensor structure for which it
is a nonneutral Tannakian category over R. There is a canonical polarization m on
V: for V of even weight, m(V, @) consists of all symmetric positive definite forms
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on V; for V of odd weight, 7(V, @) consists of all skew-symmetric positive definite
forms on V (such a form is said to be positive definite if p(v, av) > 0 for all v # 0).

A Tate triple (T,w,T) is Tannakian category together with a weight grada-
tion w: G,, —» Aut®(idr) and a Tate object T of weight -2. There is a natural
notion of a polarization of a Tate triple [Deligne and Milne 1982, p192]. For exam-
ple, V with its natural gradation and polarization and the object T = (C,z +— %)
of weight -2 is a polarized Tate triple.

Remark 3.8. If T is polarizable, then End(X) is a semisimple k-algebra for all
X inT.

Proposition 3.9. Let (T,w,T) be a Tate triple over R such that w(—1) # 1,
and let ™ be a polarization of (T, w,T). Then there exists an exact faithful functor
w: T — V preserving the Tate triple structures, and carrying « into the canonical
polarization on V ; moreover, w is uniquely determined up to isomorphism.

Proof. See [Deligne and Milne 1982, 5.20]. (Unfortunately, the proof there is
labyrinthine—a more direct proof would be useful.) O

Consequences of the standard conjectures. Fix a prime £ # p. Let Z be a
hyperplane section of X, and let z be the class of Z in H}(X)(1). Define

L: Hj(X) — H; (X)(1)

to be a — a-z. The strong Lefschetz theorem (proved by Deligne in nonzero
characteristic) states that for r < d = dim X, the map

L7 Hy (X)(r) — Hy7(X)(2d - 1)

is an isomorphism. Let A"(X) be the Q-subspace of H}"(X)(r) generated by the
algebraic cycles.

Conjecture 3.10. For 2r < d = dim X, the injection
Ld—?r: AT(X) N Ad—-r(X)

is a bijection.

For 2r < d, set

T T d—2r
Abim(X) ={a € A7(X) | LT *1a = 0}.
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Conjecture 3.11. For 2r < d =dim X, the quadratic form on A7 (X),
a,b— (=1)" < LY q b >

is positive definite.
These conjectures are due to Grothendieck.

Theorem 3.12.  Assume conjectures (3.5), (3.10), and (3.11). Then Mot(F,) has
a canonical polarization.

Proof. See [Saavedra 1972, VI1.4.4]. O

When one assumes (3.5), (3.10), and (3.11), it is not necessary to use Jannsen’s
theorem, and by extension Deligne’s theorem, to prove that Mot (F,) is a semisimple
Tannakian category.

Again, a similar argument shows that Mot (F) is polarizable.

Definition 3.13. Let w be a fibre functor for Mot (F,) over Q*, and let M, (w)
be the corresponding groupoid. We call 9t,(w) the motivie groupoid attached to
w. When w is understood, we drop it from the notations. Similarly, M(w) is the
motivic groupoid attached to a fibre functor w on Mot (F).

Remark 3.14. The canonical functor Mot(F,) — Mot (F) is faithful and exact.
Therefore a fibre functor on Mot(F) defines a fibre functor on Mot(F,) for every

q. Correspondingly, we have morphisms of groupoids 9 — 9, for every g, and
M = Lim 9N,

Consequences of the Tate conjecture. In the present context, the Tate con-

jecture states the following.

Conjecture 3.15.  For any smooth projective variety X over Fy, the Qq-subspace
of H}"(X ® F,Qq(r)) generated by algebraic cycles is equal to HY (X @F,Q(r)F,
where T' = Gal(F/F,).

When combined with Conjecture 3.5, this implies that
Hom(h(X), M(Y)) ® Q¢ ~ Hom(H(X), Hi(Y))".

Theorem 3.16. Assume the standard conjectures (3.10) and (3.11) and the Tate
conjectures (3.5) and (3.15). If M is a simple motive over Fy, then End(M) is
a division algebra with centre Q[mps]. Moreover mps is a Weil number for g, and
the map M — mp determines a one-to-one correspondence between the set of
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isomorphism classes of simple motives varieties over F, and the set of conjugacy
classes of Weil numbers for q.

Proof. If End(M) were not a division algebra, it would contain idempotents, and
M would not be simple. Let F be the centre of End(M). Clearly Q[rp] C F.
Conjecture (3.15) implies that these two algebras become equal when tensored with
Q¢, and this implies they are equal. The rest of the proof is straightforward. O

Corollary 3.17. Under the hypotheses of theorem, M, =4 quA is the multi-
plicative group with character group W(q), and M =g IM? is the pro-torus with
character group W (p™).

Proof. The theorem implies that the simple objects of Mot(F,) ® Q2! are in one-
to-one correspondence with the elements of W{q), and hence that the affine group
scheme attached to Mot (F,) ® Q*! and any fibre functor is the group of multiplica-
tive type with character group W(q). Now apply (A.13). O

From here through (3.26), we investigate the consequences of Conjectures (3.10),
(3.11), (3.5), and (3.15).

Remark 3.18. There is a unique element 6,,, € Myn(Q) such that x.(6,) = 7™
for all 7 € W(p"), where x, is the character of M, corresponding to . Let M’
be an algebraic quotient of M, and let M be the quotient of M,, by the image of
the kernel of M — M’. Then M — M, induces a homomorphism M’ < M/ and
for n' sufficiently large, the image of &, in M/ (Q) will lie in M’(Q). We again
denote in é, . If n” = mn/, then é,, = 7. The element &, generates M’ as an
algebraic group over Q. Note that, for any homomorphism ¢: M — G from M
into an algebraic group G, it makes sense to speak of ¢(8,) for n sufficiently large.

Local study of 9. We next want to study 9 locally at each prime. For each

e, we Ch()()S(E a (1lagraﬂl

Q — Qq
and we write M(¢) for the pull-back of 9 relative to this diagram (see the discussion

preceding A.5) and Mot(F,) ® Q, for the Tannakian category over Q, obtained
from Mot(F,) by extension of scalars (see A.12). (For £ = o0, Q, =R.)

Study at oo. The real Weil group W(C/R) is the extension

1-C* -»W(C/R) — Gal(C/R) — 1
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defined by the cocycle

di1 =d1,b Zdb,l =1, d,.=-1

) )

Define &, to be the C/R-groupoid with complex points W(C/R).

Proposition 3.19. The groupoid attached to V and its canonical fibre functor
is &(00).

Proof. Straightforward. O

Proposition 3.20. There exists an exact faithful functor we: Mot(F,) ® R —
V preserving the Tate triple structure and carrying the canonical polarization of
Mot(F,) ® R into the canonical polarization on V; moreover, we is uniquely
determined up to isomorphism.

Proof. Combine (3.12) and (3.9). a

Corollary 3.21. The homomorphism w: C* — M(C) defined by the weight
gradation on Mot(F) extends to a homomorphism of groupoids (o, : oo — M(c0);
the extension is unique up to isomorphism.

Proof. Apply (3.19). O

Study at £ # p,00. Let &; be the trivial Q3'/Qq-groupoid, i.e., the Q3!/Q,-
groupoid such that ‘

&¢(Q}') = Gal(QF'/Q).

Proposition 3.22. There exists a homomorphism (g: 8, — IMM(¥), well-defined
up to isomorphism.

Proof. As we noted above, the (-adic étale cohomology defines a fibre functor
wy over Qg. The choice of an isomorphism w ®ga Q?l — we Vg, Q‘j’ defines a
homomorphism (. a

Study at p. Let k be a perfect field, let W = W(k) be the ring of Witt vectors
over k, and let B = B(k) be the field of fractions of W. An #socrystal over k is
a finite-dimensional vector space V' over B together with a o-linear isomorphism
@: V. — V. The category of isocrystals over k has a natural tensor structure for
which it is a Tannakian category over Q,. The forgetful functor is a fibre functor
over B.

Let L, be the unramified extension of Q, of degree n contained in Q;',
and let o be the canonical generator of Gal(L,/Q,). The fundamental class in
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H?*(Gal(L,/Qyp), LX) is represented by a canonical cocycle (d, ) which takes the
following values: for 0 < 4,5 < n,

-1 :p - .
p T ifi4j>mn;
dyios = { >

1 otherwise.

The Weil group W (L,,/Q,) is the extension
1— L - W(L,/Qp) — Gal(L,/Qp) — 1

corresponding to the above cocycle. Let @] be the L,/Q,-groupoid such that
D] (L,) = W(L,/Qyp), and let D, be its pull-back to a B/Qp-groupoid. Thus
Dp has kernel G,, and it has a canonical section over B ®qg, B. Whenever m|n
there is a homomorphism ®,, — D,, (not preserving the canonical sections) whose
restriction to the kernel is @ — a™/™, and on passing to the inverse limit we obtain
an affine B/Qy-groupoid ® whose kernel is the pro-torus G with character group

Q.

Proposition 3.23. The groupoid attached to the category of isocrystals over k
and its forgetful fibre functor is 3.

Proof.  Omitted. d

We call © the Dieudonné groupoid, and we write &, for its pull-back to
a Q;",l /Qp-groupoid. It is the groupoid attached to the fibre functor over Qzl,
VeVes le. We also write 055,") for the pull-back of ®,, to a Q;I/Qp—groupoid.

Proposition 3.24. The functor sending a smooth projective variety X to its
crystalline cohomology Heys(X) extends to a tensor functor from Mot (F) to the
category of isocrystals over F. Consequently, there is a homomorphism (p,: &, —
M(p), well defined up to isomorphism.

Proof. Straightforward. O
Summary. The following theorem summarizes the above discussion.

Theorem 3.25. Assume the conjectures (3.5), (3.10), (3.11), and (3.15). Then
the motives over F form a canonically polarized Tate triple. Choose a fibre functor
w and let M(w) be the corresponding Q* /Q-groupoid. Then

(a) the kernel M(w) of M(w) is a pro-torus with character group W (p);

(b) for each prime £ of Q (including p and oo) there exist homomorphism
Co: &y — M(w)(¥), well-defined up to isomorphism.
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If M(w') is the groupoid corresponding to a second fibre functor w' over Q® | then
the choice of an isomorphism w ~ w’ determines an isomorphism a: M(w) — M(w')
whose restriction to the kernel is the identity map, and « is well-defined up to
isomorphism; for any £, a(f) o (¢ ~ (.

Remark 3.26. For each ¢, the restriction of ¢, to the kernel has an explicit
description, not involving motives, whose elaboration we leave to the reader.

Pseudomotivic groupoids. We now drop all assumptions. The above discussion
suggests the following definition.

Definition 3.27. A pseudomotivic groupoid is a system (%, () consisting of
a Q*/Q-groupoid P and morphisms ¢;: &, — B () for all £ satisfying the following
conditions:

(a) the kernel P of B is a pro-torus with character group W (p>);
(b) for each £ (including p and o), (f* has the description hinted at in (3.26).

Theorem 3.28.  There exists a pseudomotivic groupoid (B, (¢)). If (P, (¢})) is
second pseudomotivic groupoid, then there is an isomorphism «: B — B’, such
that {; ~ a o (¢; moreover, a is uniquely determined up to isomorphism.

Proof.  One computes easily that the cohomology groups H!(Q, P) and Ker?(Q, P)
are both zero, and the theorem follows easily from this. d

Relation to CM-motives. Let CM be the category of motives of CM-type over
Q? as defined, for example, in [Milne 1990, 1.4]. It is a Tannakian category over
Q with a canonical fibre functor Hp (Betti cohomology) over Q. The associated
group scheme is a pro-torus S called the Serre group.

Conjecturally, a CM-motive M will have a model Mg over some number field
E, and, after possibly replacing F with a larger field, Mg will have good reduction
at the prime induced by the chosen embedding Q2 — Q;l. After reducing modulo
this prime, we will obtain a motive M(p) over a subfield of F. When regarded as
motive over F, M(p) is independent of all choices. Therefore (conjecturally) we
have a functor

M +— M(p): CM — Mot(F,).
According to (A.10), this will give a homomorphism
P — &g,

well-defined up to isomorphism. In the remainder of this section, we construct such
a homomorphism.
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Remark 3.29. The Serre group is an inverse limit S = y_r_nS’L of tori ST where
L is a CM-field contained in Q* and S is a certain quotient of (Gm)r/q. For
n >> 1, it is possible to define a Frobenius element 7, € S*(Q) as follows. The
kernel of the canonical map L* — S(Q) contains a subgroup V of finite index in
the group of units U of L. Let p be the prime ideal of L induced by the embedding
LcQ¥— Q;l. For some m, p™ is principal, say p™ = (a). Let f be the degree
of the residue extension x(p)/F,, and choose n so that n/mf is an integer killing
U/V. Then the image v, of a®™f in SY(Q) is independent of all choices.

Let T be a torus over a field k. When p is a cocharacter of T defined over a
finite Galois extension L of k, we set

v=Trpsp=g », Th
r€Gal(L/k)
It is a cocharacter of T rational over k.
Lemma 3.30. Let (d,.) be a 2-cocycle for Gal(L/k) with values in L, and let

Cp = H (ptp)(dp,e)-

teGal(L/k)

Then (c,) is a l-cochain for Gal(L/k) with values in T(L) having coboundary
(v(d,+)), e,

Cp* PCr+ C;Tl =v(dp,+)-

Proof. Direct calculation. a

Now assume k is a local field. We apply the above lemma to the Weil group of
L/k:
1 L*—-W(L/k)— Gal(L/k) — 1.
Choose a section s: Gal(L/k) — W(L/k), and write s(p) - s(7) = dprs(p7). Then

d,- is a 2-cocycle, and v(d, ;) is split by the 1-cocycle (c,) defined in the lemma.
Consequently, there is a homomorphism of extensions:

W(L/k) — T(L) % Gal(L/k), awrv(a), aelL”, s(p) (cpp)-

Lemma 3.31. Up to conjugation by an element of T(L), the homomorphism just
defined is independent of the choice of s.

Proof. Direct calculation. O
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Example 3.32.

(a) When we apply the above construction in the case that k = R, L = C
(taking s to be the canonical section), we see that any u € X,(T) defines a
homomorphism £,: W(C/R) — T(C) x Gal(C/R) such that

§u(2) = p(2) - (u)(2), z€C, &u(s() = (u(=1),0).

We can regard ¢, as a homomorphism of groupoids &., — &y (00).

(b) When we apply the above construction in the case that k = Q, and L,
is the unramified extension of Q, of degree n contained in Q;', we obtain
from p € X,(T) defined over L,, a homomorphism W (L,/Q,) — T(L,)
Gal(L,/Qyp) whose restriction to the kernel is v. These homomorphisms are
compatible with varying n (up to isomorphism), and so define morphisms
of groupoids

§u: D — B7(p), &u: &, — Gr(p).

Theorem 3.33. For any algebraic quotient S’ of the Serre group, there exists a
morphism p: P — G such that

) ©(bn) =", n>>1;
& if £ = oo,

(1) p(€)oCom { &y ifE=1p,
& otherwise, where & is the canonical splitting &, — ®g.
Moreover, ¢ is uniquely determined by these conditions up to isomorphism.

Proof.  Omitted. ad

Corollary 3.34. Let T be a torus over Q split by a CM-field, and let p be a
cocharacter of T whose weight is defined over Q. Then there is a homomorphism

Pt B — 6,
well defined up to isomorphism.

Proof.  Under the hypotheses on (T, i), there is a unique homomorphism p: § —
T carrying the canonical cocharacter of S to u. Clearly p will factor through
some algebraic quotient S” of .S, and so it defines a homomorphism of groupoids
&g — Br. We define ¢, to be the composite this with (. O
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Unramified homomorphisms. For use in the next section, we state some results
concerning homomorphisms &, — ;. Recall that we have an exact sequence

1- Q) 6(7(Q) — Gal(@}/Qy) — 1,

and a canonical section s. A homomorphism 6: Qﬁ](pn) — & defines a homomor-
phism

80 (Q) — G(QY) % Gal(Q2/Qy),

and we say that 8 is unramified if

plQy" =id = 6(s(p)) = (1, p).

Proposition 3.35.

(a) An unramified homomorphism arises by pull-back from a (unique) homo-
morphism 8': D,, — &4. ‘
(b) Every homomorphism 6: QS,(,n) — B¢ is isomorphic to an unramified homo-

morphism ¢, and 6’ is uniquely determined up to conjugation by an element
of G(Qp").

Proof. Omitted. O

Remark 3.36. Consider a homomorphism 6: &, — &¢. For some n, 0 will
factor into

180

&, — 6"~ &,

and ™ will be equivalent to an unramified homomorphism 6': ®,, — &4. Set
6'(s(0)) = (b(#),0). From (a) of the proposition, we know that b(d) € G(B), and
from (b) of the proposition, we know that it is uniquely determined by & up to
o-conjugacy. Thus we have a well-defined map

8 — [b(6)]: Hom(&,, &) — B(G)

where B(G) is the set of o-conjugacy classes of elements in G(B) (see Appendix
B).

Notes. Theorems 3.25, 3.28, and 3.33 are proved in [Langlands and Rapoport
1987]. The article [Milne 1991b)] is an expanded version of this section.
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4. STATEMENT OF THE MAIN CONJECTURE

Throughout this section, Sh(G, X) is a Shimura variety whose weight is defined
over Q. Let E = E(G, X), and let v be a prime of E lying over the rational prime
p. Since we are only interested in the case of good reduction, we assume that there
is a hyperspecial group K}, in G(Qp), and we set Sh,(G, X) = Sh(G, X)/K, where
Sh(G, X) is the canonical model over E(G, X). We assume that Sh,(G, X) has an
integral canonical model Sh,(G, X), over O, (see 2.9).

Throughout, we fix an algebraic closure Q;' of E,, and we extend the inclusion
of F into E, to an inclusion of Q? into Q;]. For each £ # p, 00, we choose an
algebraic closure Q;?' of Q; and an embedding of Q2 into Q';". Finally we choose a
pseudomotivic groupoid (P, ({¢)), as in (3.27).

The set Shy,(F) =4 Sh,(G, X),(F) has an action of G(A%) and an action of
the geometric Frobenius element ® of Gal(F/k(v)). Because the action of G(AF)
is defined over O,, these two actions commute. The conjecture describes the iso-
morphism class of the set Sh,(F) together with these commuting actions, which we
abbreviate to (Sh,(F), @, x).

The set with operators S(p). Let ¢ be a homomorphism P — Gg. We
explain how to attach to ¢ a set S(y) together commuting actions of a Frobenius
element ®(p) and G(A%). For each £ (including p and co) we obtain by pull-back
a morphism p(£): PB(£) — G (¢), and we write 6, for the composite of this with

Ce: B¢ — P(£); thus

Go: By i(@_OCe_) G (f).

Let I, = Aut(p). It is an algebraic group over Q such that

1,(Q) = {g € GQ") | adg o p = }.
Moreover,
(1)(Qe) = Aut(p(£)) C Aut(6e).

Consider a prime £ # p,oco. There is a canonical homomorphism &: &; — B¢,
which on points is the obvious section to

G(@Q}") % Gal(Q}'/Qe) — Gal(Q}'/Qy),

and (see A.17)
Go, = Aut(&).

Define
Xe(p) = Isom(&e, 0e) =ar {g € G(QF) | adg o & = ).
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Then I,(Q) acts on X¢(p) on the left, and G(Qy) acts on X¢(p) on the right. If
X¢(yp) is nonempty, this second action makes Xy(p) into a principal homogeneous
space.

Choose a Z-structure on G, and let X;(¢) be the subset of Xy(p) of integral
elements. Define XP(yp) to be the restricted product of the X,(p), £ # p, 00, relative
to the subsets X;(p). It is independent of the choice of the Z-structure. The group
G(A’f’) acts on XP(y) on the right {and makes it into a principal homogeneous space
if nonempty), and I,(Q) acts on it on the left.

Consider 6,: 8, — Ba(p). As is explained in (3.36), this will factor through
®§,") for some n,

g(n)
6]’ - QsI(Jn) L’ 66‘(1)),

and 9,(,") will be isomorphic to an unramified homomorphism 6': QS;") — Ga(p). Set
¢’ (s(o)) = (b(6p),0). Then b(6,) € G(B), and it is well-defined up to o-conjugacy
by an element of G(B).

From the definition of E(G, X) we know that X defines a G(Q?')-conjugacy class
of cocharacters ¢(X)ga of Gga that is stable under the action of Gal(Q*/E) (see
the discussion following 1.7). Using the embedding Q*' «— Q;‘)l we transfer ¢(X)ga
to a conjugacy class ¢(X)qa of cocharacters of Gga stable under Gal(Q3'/E.,).
Because G splits over B, ¢(X)ga arises from a G(B)-conjugacy class ¢(X)p of
cocharacters of Gg. The group G(B) » Gal(B/Q,) acts on the building, and we
set

Xp() = {z € V(B) | inv(Fz,z) = «(X)B}

where F = 6'(s(0)) = (b(6p),0).
Alternatively, let C, € G(IW)\G(B)/G(W) be the double coset corresponding
to ¢(X)p (see the subsection on hyperspecial groups at the end of §1); thus

Cp=GW) - pp)-GW)

where u is a cocharacter representing ¢(X)p and factoring through a torus S cor-
responding to K,. Then

Xp(p) ={9€ GB)/GW) |g~"-b-og € Cp}

where b = b(6,).
There is a natural action of Aut(6’) on X, on the left, and the choice of an
isomorphism 8,(,n) — 6’ allows us to transfer this to an action of I,(Q).



188 J.S. Milne

For g € X,(¢p), define
Bg=F"g =4 bo(bo(...9)) =b-ob-c%b-...- o™y,
where m = [E,: Q). Then
(@9)™'-b-0(Bg) = 0™ (97" -b-0g) € 0™ Cp =C,

because ¢(X)p (and hence Cp) is stable under Gal(B/E,). Note that we can also
write &g = Nb-o™g where Nb=b-ob-....- o™ 1b.
Define

S(p) = lim I, (Q\(X7(p)/K*) x X,(p),
where the limit is over the compact open subgroups K? of G(A’}). The group G (A’f’)

acts on S(yp) through its action on XP(yp), and ®(p) acts through the action of @
on Xp(p).

Lemma 4.1. The isomorphism class of the triple (S(p), ®(p), x(¢)) depends only
on the isomorphism class of .

Proof. Let ¢': P — & be a second homomorphism, and assume that ¢’ = ad coyp
for some ¢ € G(Q*). For some n, 6, =4 ¢(p) o (, and 0, =ar ¢'(p) o ¢, will factor
through QSI(,"). Choose an h and A’ in G(Q;') such that 8 =4 adho 0,(,") and
¢ = adh o 6™ are unramified. Then ¢’ = ad(h”) o 6 where A" = h'-c-h™!. It
follows easily from the fact that 6 and ¢’ are unramified that h” € G(B).

We have bijections:

I,(Q) = I,(Q), g ad(c)(g);
Xe(p) = Xe(¢'), 2P ca?, £#p, oo
Xp(p) = Xp(¢), zp+— h"z).

On combining the last two bijections, we obtain a bijection
XP(p) x Xp(p) = XP(¢") x X, (¢")

which is equivariant relative to the isomorphism I,(Q) — I (Q) (left actions) and
for the right actions of G(A%). We therefore obtain a G(A%)-equivariant bijection

(67, 23] v [ea?, W'z, 5(0) — S():
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Write 8(s(c)) = (b,0) and #'(s(0)) = (¥',0). Then b’ = A" -b-o(h")™!, and so
NV =h"-Nb-o™(h")™!. By definition, ®[z?,z,] = [2?,Nb- c™x}], which maps
to
[ca?, b - Nb - 0™xp] = [ca?, NV - a™(h""zp)] = ®'[ca?, b zp).
Thus the bijection commutes with the actions of the Frobenius elements. O
The conjecture will take the form that (Sh,(F), ®, x) is isomorphic to a disjoint
union of sets with operators of the form (S(y), ®(¥), x(p)). The difficulty is in

determining the indexing set for the union. It will be illuminating to look first at
the case of the Shimura variety defined by a torus.

The case of a torus. Let T be a torus over Q that splits over a CM-field, and
let h:' S — T be a homomorphism whose weight is defined over Q. Let u be the
cocharacter of T associated with h, and let E = E(T, {h}) be the field of definition
of p; it is the reflex field of Sh(T,{h}). Choose a prime number p and a prime v
of E that is unramified over p. Assume that T splits over an unramified extension
of Q,, and let K, be the hyperspecial subgroup of T(Q,) defined in (2.16). Then,
as we noted in (2.16), Sh,(T, {h}) has a canonical model over O,.

Proposition 4.2. Let ¢ = ¢,: P — B be the homomorphism defined in (3.34).
Then the sets with operators (Sh,(F), ®, x) and (S(p), ®(¢), x()) are isomorphic.

Proof. The maps
Shy(B) « Shyp(Oy) — Shy(F)

are bijective because Shy, (T, {h}) is of dimension zero and pro-étale over O,. Thus
Shy(F) = T(Q)"\T(A}) x (T(Q)/T(Zy)), T(Zyp) = K.
The cocharacter p is defined over E, and defines a homomorphism
Pt (Gm)5jg ~22/% Resp o(Ti) 2 T.

Let
1o =(1,...,1,p,1,...,1), (p in vth position).

Then, according to Deligne’s convention, recg(s) acts on E®P as the geometric
Frobenius element at v. Therefore ® acts on Shy,(F) as multiplication by

r(my) =(1,...,1,Nmg, o, #(p),1,...,1), Nmp in the pth position).

This gives a complete description of (Sh,(F), ®, x). To obtain a similar descrip-
tion of (S(y), ®(p), x) we shall need the following lemma.
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Lemma 4.3. Let T be an unramified torus over Q,. For any u € X.(T), we
have a homomorphism §,: W(B/Q,) — T(B) x Gal(B/Q,) well-defined up to
conjugation by an element of T(B) (see 3.32b). Write {,(s(c)) = (b,,0). Then
[bu] = [u(p™")] in B(T).

Proof.  Take n large enough so that T is split by the extension L,, of degree n of Q,
contained in B. Let (d, ) be the canonical fundamental cocycle for Gal(L,/Q,)

with values in L)X (see the discussion preceding 3.23). For any p € Gal(Q2'/Q,),
set

o= ] (otw)(dpy)

teGal(Ln /Qp)

where, in the product, p denotes p|L,,. Then
a-5(p) = v(a)(c, p): Dr — B,

is an unramified homomorphism whose composite with © — D,, represents &
Therefore

bu=co=ar J] (@' m)d,.0).

0<i<n~—1

But all the terms in this product are 1 except for that corresponding to i =n — 1,
which has the value u(p™!), as required. a

The group I, = T'. The choice of an isomorphism ap: & — 6, defines a bijection
T(Qo) — Xulp), g aoog.

Moreover,

Xp(p) ={g € T(B)/T(W) |97 -b-ag € p(p) - T(W)}.

The above lemma shows that we can take b to be u(p) (recall that w(p)o(, ~ ¢ w)s
and so

Xp() = (T(B)/T(W))"
where I' = Gal(B/Q,). Now the cohomology sequence
0= T(Zp) - T(Q,) — (T(B)/T(W))" - H'(T,T(W)) =0

shows that X, (p) = T(Q,)/T(Z,).
It remains to compute the action of ®(yp), but this is multiplication by
Nmg, /g, #(p), and so agrees with the action of r(r,). O
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Statement of the main conjecture. A point x € X is said to be special if h,
factors through Tk for some torus T' C G. For each such pair (T, z), we obtain a
homomorphism (see 3.34)

Ve =Pu,: PB— G C 8¢
which, as the notation suggests, is independent of the choice of T. Call such a

homomorphism special.

Main Conjecture 4.4. There is an isomorphism

(Shy(F), @, x) ~ [[(S(¢), 2(¢), x (1)) (4.4.1)

where the disjoint union is taken over a set of representatives for the isomorphism
classes of special homomorphisms ¢: P — B.

We call a homomorphism ¢: B — & admissible if it is isomorphic to a
homomorphism of the form ¢,, = special, and the set S(¢) is nonempty. Then
we could restate the conjecture as saying that there is a bijection (4.4.1) with the
@’s running over a set of representatives for the isomorphism classes of admissible
homomorphisms.

Admissible homomorphisms. We give a criterion for admissibility which ap-
plies in the case that G4¢* is simply connected.
Recall that &, is the C/R groupoid such that ., (C) = W(C/R) (the real
Weil group). Thus there is an exact sequence
15 C* - 6,(C) - Gal(C/R) — 1
and a canonical section s: Gal(C/R) — &, (C). Recall also that the neutral gerb
& has points &¢(C) = G(C) x Gal(C/R).

Lemma 4.5. For any point x € X, the formulas
& (2) = (wx(2),id), & (s(t) = (ua(—=1)7",0)
define a morphism of C/R-groupoids. If ' = gz, g € G(R), then £, =adgo&,.

Proof. To show that the formulas define a homomorphism of abstract groups, it
suffices to verify that &.(s(1))? = €,(~1). But

(4o (=171 0% = (42 (=1) - sz (1)), 1) = (wx (=1),id)
as required. It is now obvious that the formulas define a morphism of groupoids.
The second statement is obvious. O

We write £ for &, any x.
When ¢ is a homomorphism B — &, we write 2P for the composite of ¢
with the map g — ®geb induced by the quotient map G — G2,
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Theorem 4.6. Assume that GY" is simply connected. A homomorphism ¢: P —
& is admissible if and only if it satisfies the following conditions:

(a) (o0 @(00) is isomorphic to éx;
(b) (e o @(£) is isomorphic to &;
(c) the set X,(yp) is nonempty; o b

(d) the composite ¢ of ¢ with ¢ — Ggab is /the canonical homomorphism
attached to u*® =y (G, £ G — G2P) (see 3.34) .

Proof. See [Langlands and Rapoport 1987, 5.3]. O
Remark 4.7.

(a) If Ker'(Q, G*) = 0, then the condition (d) can be omitted—it is implied
by the remaining conditions.

(b) It follows from (a) of the theorem and (A.19) that I, g is anisotropic modulo
its centre.

The case of a nonsimply connected derived group. In their paper, Lang-
lands and Rapoport define a homomorphism ga:' P — B¢ to be admissible if it
satisfies the conditions of (4.6)—in order not to confuse it with our condition we
shall call such a homomorphism is LR-admissible. Their conjecture (ibid. 5.e,
p169) states that there is an isomorphism (4.4.1) when the disjoint union is taken
over the isomorphism classes of LR-admissible homomorphisms; thus it agrees with
(4.4) when G is simply connected. They then give an example (ibid. pp208-
214) that shows that, if their conjecture is true for Shimura varieties with simply
connected derived group, then it can not be true for all Shimura varieties. Here we
turn their argument around to obtain the opposite conclusion for our version of the
conjecture.

In fact we shall need to consider a slight strengthening of (4.4). Let Z = Z(Q);
then Z(Q,) acts on both Sh,(G, X) and on S(p), and it commutes with the actions
of G(A%) and the Frobenius element.

Conjecture 4.8. For any Shimura variety Sh(G,X) and hyperspecial subgroup
K, of G(Qp), there exists an isomorphism (4.4.1) commuting with the actions of

Z(Qy)-

Now consider a Shimura variety Sh(G, X). Let A be an algebraic subgroup of
Z(G) with the property that H!(k, A) =0 for all fields k O Q, and let G’ = G/A.
Write « for the quotient map G — G’ and let X’ be the G'(R)-conjugacy class of
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maps S — Gf containing h, o « for all z € X. Then (G', X’) defines a Shimura
variety.

Theorem 4.9. Let K, and K, be hyperspecial subgroups of G(Q,) and G'(Q,)
respectively such that a(Kp) C K. If conjecture (4.8) is true for Shy(G, X), then
it is also true for Sh,(G’, X').

The proof will require several lemmas.

Lemma 4.10. Let a: G — G’ be a surjective homomorphism of algebraic groups,
and assume that G is connected. For any torus T in G, « defines a surjection from
the centralizer Zo(T) of T in G onto Z¢ (a(T)). If in addition Ker(a) C Z(G),
then Za(T) = o= (Zc (a(T)).

Proof. The first statement is proved in [Borel 1991, p153]. Assume Ker a C Z(G),
and suppose a(g) € Zg (a(T)). Then there exists a g’ € Zo(T) such that a(g) =
a(g’), and so g € Z¢(T) - Ker(a) C Za(T).

Lemma 4.11. Under the hypotheses of the theorem, o maps X bijectively onto
X'.

Proof. The surjectivity of X — X' follows from the surjectivity of G'(R) — G(R).
Let M be the G(C)-conjugacy class of homomorphisms G,, — G¢ containing p;
for each z € X, and let M’ be the similar set attached to X’. Because z +— i, is
injective, it suffices to show that the map M — M’ defined by « is injective. Fix
an 7o, and let zj be its image in X'. Then M = G(C) - pz, and M’ = G'(C) - oy,
and the injectivity follows from (4.10) applied to T = pi20(Gm). a

Lemma 4.12. Under the hypotheses of the theorem, o maps the set of special
points of X bijectively onto the set of special points of X'.

Proof. 1t is clear that z € X is special if and only if its image in X’ is special.
O

Let K? and K'? be compact open subgroups of G(A’}) and G’ (A’}) respectively
such that a(KP) C K, and let K = K?- K, and K' = K'?- K. Tt follows
from [Tits 1979, 3.9.1] that a(K) is a subgroup of finite index in K', and so, after
possibly replacing K with a smaller group, we may assume that a(K) is normal in
K'. Then

C =y AQ\a" (K')/K

is a finite group, which acts on Sh(G, X)/K on the right. Note that a: K, — K,
is surjective, and so o~ (K') C G(A}) - Z(Qp), Z = Z(G).
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Lemma 4.13. Over C, the map Sh(G,X)/K — Sh(G’,X')/K’' defined by «
identifies the second scheme with the quotient of the first under the action of C.

Proof.  This follows easily from the facts that G(Q) — G’(Q) and G(Af) — G'(Ay)
are surjective and X — X' is bijective. a

Lemma 4.14. For K? and K'P sufficiently small, the map
Shy (F)/KP — Sh,(F)/K'

defined by « identifies the second group with the quotient of the first under the
action of C.

Proof. For K? and K'? sufficiently small, the map
Shy(G, X)/KP — Sh, (G, X')/K'P

will be étale. Because of our definition (2.9), this statement extends to the integral
canonical models, and so the map in the statement of the lemma is surjective. The
remainder of the assertion follows from (4.13). a

Lemma 4.15. Let ¢: B — & be a special homomorphism, and let ¢/ = @ o .
For K? and K'P sufficiently small, the map

S(w)/KP — S(¢")/K'P

defined by « identifies the second group with the quotient of the first under the
action of C.

Proof. The kernel of I, — I , is A, and so the map I,(Q) — I, (Q) is surjective.
The rest of the proof is straightforward. O

After (4.14) and (4.15), in order to prove the theorem, it remains to show that
the map ¢ — ¢’ =4 a o ¢ defines a one-to-one correspondence between the sets of
isomorphism classes of special homomorphisms P — B¢ and P — G

Lemma 4.16. Let fi and f be homomorphisms P — G such that f] =4 ao fi
and fy =4 ao fy differ by an inner automorphism of G' and fi* = f2*. Then f,
and fy differ by an inner automorphism of G.

Proof. Since G = G"4, we can replace f1 by its composite with an inner auto-
morphism of G to achieve f{ = f;. Now f, = f; - ¢ where ¢ is a homomorphism
P — A. The condition f#* = f2b implies ¢ maps into AN GY, which is a finite
group. As P is connected, this implies that ¢ = 1.
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Lemma 4.17. Let @1 and @y be homomorphisms P — & such that | =~ o)
and 3P ~ p3®. Then o1 ~ .

Proof. From the preceding lemma, we can suppose that ¢f = 2. Consider
Isom(p1,p2). After (A.18) it is a torsor for Aut(yp1), and so defines an element in
HY(Q, Aut(p1)). We have an exact sequence

1 — A — Aut(p1) — Aut(p]) — 1.

We are given that the cohomology class of Isom(py,p2) becomes trivial in
HY(Q, Aut(p})), and this implies that it is trivial in H'(Q, Aut(y1)) because of
HY(Q,A) =0. a

Lemma 4.18. The map ¢ — ¢’ =4 a0 ¢ is a bijection from the set of isomor-
phism classes of special homomorphisms B — & to the set of isomorphism classes
of special homomorphisms P — Gy .

Proof. 1t remains to show that, for special points z; and x5 of X,

Py N Py = P2y N Py
But (2,)?" ~ (¢.,)??, and so this follows from the last lemma. O

Corollary 4.19. In order to prove Conjecture (4.8) for all Shimura varieties, it
suffices to prove it for those defined by groups with simply connected derived group.

Proof. Consider a Shimura variety Sh(G,X) and a hyperspecial subgroup K.
According to [Milne and Shih, 1982b, 3.4.] there exists a Shimura variety Sh(G1, X;)
and a map a: G| — G whose kernel A satisfies the above condition and such that
G$er is simply connected and E(G, X;) = E(G, X). Moreover (ibid. 3.1), because
G is unramified over Q,, we can choose a so that Ker a splits over an unramified
extension of Q,,. There exists a hyperspecial subgroup Kzln of G'(Qp) such that
a(K,) C K, and we can apply the theorem.

Remark 4.20. Langlands and Rapoport (ibid. §7) construct a map a: G — G’
satisfying the conditions (4.8) and an admissible homomorphism ¢: P — &g.
They construct a cocycle Z'(Q, Aut(yp)) that maps to zero in H'(Q,G’2P) and
in H'(Q, G) for all £, but not in H'(Q, G*). Note that the kernel of G2> — G'2P
is A/Ker(G%" — G'9")  which need not have trivial cohomology, and so this is
not impossible. Now z - ¢ is not LR-admissible (it fails 4.6d) but z - ¢’ is LR-
admissible, which shows that their conjecture can not be true for both Sh,(G, X)
and Sh,(G’, X'). In our terminology, neither is admissible. (If z-¢’ were admissible,
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it would be isomorphic to ¢,/ for some special z’; let = be a special point mapping
to x’; then ¢, = 2 - ¢ because (¢;) = z-¢', and this contradicts the fact that
(=) = o)

Remark 4.21. Although the condition that ¢ be special in (4.4) appears to be the
correct one when Sh(G, X) has good reduction, according to the second example in
[Langlands and Rapoport 1987], §7, it is not the correct condition to take in the case
of bad reduction. A better understanding of the correct condition for admissibility
is needed.

Notes. Apart from the changes noted in the text, this section follows [Langlands
and Rapoport 1987]. For a more detailed discussion of the philosophy underlying
the conjecture, see [Milne 1991¢].

5. THE POINTS OF Shg(G,X) WITH COORDINATES IN F,

In §4 we gave a conjectural description of the set Sh,(G, X)(F) together with
the actions of G(A’f’) and the Frobenius endomorphism on it. In this section we
restate the conjecture in terms of the points with coordinates in F,.

We retain the notations and assumptions of the first paragraph of §4. In par-
ticular, K, is a hyperspecial subgroup of G(Q,) and Sh,(G, X), is the canonical
model of Sh,(G, X) =a4 Sh(G, X)/K, over O,. For simplicity, we assume that the
largest R-split subtorus of Z(G) is already split over Q. This implies that Z(G)(Q)
is discrete in Z(G)(Ay) (and in Z(G)(A%)).

In general the scheme Sh,(G, X), has no points with coordinates in a finite
field. Thus in order to obtain a nonvacuous statement, we choose a compact open
subgroup K? of G(A’f’), write K = K? - K,,, and define

Shi (G, X) = Sh(G, X)/(K” - K,) = Sh,(G, X)/KP.

Since Shy(G, X), together with the action of G(A%), is assumed to have a canon-
ical model over O,, we can regard Shg (G, X) as being defined over O,. Thus
Shg (Fq) =arShg (G, X)(F,) is defined for every field F, containing x(v).

Statement of the conjecture. A motive M over F, gives a motive My over
F together with a Frobenius element ¢ € Aut(Mg), and the pair (My,€) should
determine the isomorphism class of M over Fy. This suggests that, in describing
Shk (Fq), we should consider pairs (¢, €) where ¢ is an admissible homomorphism
B — B¢ and € is an element of I,(Q), i.e., € is an automorphism of . For the
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moment, we impose no condition on €. If (p,€) and (¢, €) are two such pairs, then
we define
ISOIII((QP, 5)’ ((10,7 E/)) = {a € ISOIl'l((p, (PI) | a(e) = 6/}
={g€G@Q") |ad(g)op=¢', ad(g)(e) =¢}.
Also, we set
I, (Q) = Aut(p, €) = centralizer of € in I,,(Q),
XP(p,€) = {z¥ € XP(yp) | exP = 2P mod K},
Xp(p,€) ={ap € Xp(p) | €xp = 71},

where r = [F,: x(v)]. Finally, we define

Sk(p,e) = Lo, (Q\XP (i, €) X Xp(p,€)/KP.

Note that, for any g € G(A%) and compact open subgroups K? and K'? of G(A%)
such that K'? C gKPg~!, there is a map

SK’(QOaE) - SK(@: 6)7 [mp)xp] = [xp 'gaxp]'

Conjecture 5.1. There is a family of bijections

aK: ShK(]Fq) — Htp,s SK(()O>€):

one for each sufficiently small compact open subgroup K? in G(A’;), such that the
diagram

Shy/(F,) —*, I1,. Sk (p,€)

I !
Shi(Fy) —*— I1,.Sk(p,e€)

commutes for any g € G(A’;) such that K' C gKg~!. The disjoint unions are over
a set of representatives for the isomorphism classes of pairs (p, €) with ¢ admissible

and € € I,(Q).

Remark 5.2. Two pairs (p,€) and (p, €') are isomorphic if and only if there is an
element g € G(Q*) such that ad(g) o = ¢ and g-€-g~! = €. The first condition
on g implies that it is in I,(Q). Therefore, for a fixed ¢, the isomorphism classes
of pairs (g, €) are parametrized by the conjugacy classes in I,(Q).

In the remainder of this section, we prove that for a given Shimura variety
Sh(G, X), hyperspecial group K,,, and good prime v of E(G, X), this conjecture is
implied by the Main Conjecture 4.4.
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A combinatorial lemma. The proofis based on the following easy combinatorial
lemma.

Lemma 5.3. Let I be a group, and let X and Y be left I-sets. Let a and b be
maps of I-sets Y — X . Suppose that there is a subgroup C of the centre of I with
the following properties:

(i) the isotropy group in I at every x € a(Y) is C;
(i) if ghg~'h=' € C, g,h €I, then ghg'h™1 =1, ie, I®* NC =1.

Then the set (I\Y)*=* on which the maps I\Y — I\X defined by a and b agree
is a disjoint union
(I\Y)*=" =1, In\Ya
where
Y, ={yeY | hay = by},
Iy, ={g €I|gh=hg}, ie., I is the centralizer of h in I,
and h runs through a set of representatives in I for the conjugacy classes of I/C.

Proof. Clearly I, does act on Y3, and the inclusion map Y, — Y gives a well-
defined map I\Y» — I\Y whose image is contained in (I\Y)*=b. Let y represent
an element of (I\Y)*=*. Then gay = by for some g € I, and, because the h’s are a
set of representatives, g = ihi~!c for some i € I, ¢ € C, and some h. Now, using
(i), one finds that i~y € Y},. Since i~y represents the same class as y, this shows
that y is in the image of the map

I, In\Ys — (1\Y)*=?,

which is therefore surjective. It remains to show that this map is injective. Let y
and y’ be elements of Y, and Y} respectively that represent the same class in I\Y'.
We are given that:

hay =by, hay =by, v =gysomegel.
On substituting from the last equation into the second, we find that
hagy = bgy, or h'gay = gby.

On comparing this with the first equation, we see that h and g~ 'A’g have the same
action on ay, and it follows from (i) that the two elements differ by an element
ceC,

g 'h'g = he.
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This shows that h and A’ lie in the same conjugacy class of I/C, and because the
h’s form a set of representatives for these classes, this means h = h’. Now the
equation g7'hg = hc and assumption (ii) imply that h = g7 'hg, ie., that g € I,
and so y and y’ define the same class in I\Y;. O

Remark 5.4. In the statement of the lemma, we have allowed h to run through
a complete set of representatives for the conjugacy classes in I/C, but clearly we
need only take those h for which there is a y € Y such that hay = by.

The Main Conjecture implies 5.1. Before we can apply (5.3), we need a
lemma.

Lemma 5.5. Let Z denote the centre of G, and let ¢ be an admissible homo-
morphism B — &¢. For sufficiently small KP, the following hold:

(a) ife € I,(Q) and ex =« for some x € (XP/KP) x X, thene € Z(Q)NK;
(b) L@ NZ@nK = {1}.

Proof.  (a) After dividing by Z, we can assume Z = 1. Since I,(R) is compact
(see 4.7b), € is semisimple, and so lies in a subtorus T of G. I claim that if y
is a rational character of T and v is a valuation of Q*, then |x(e)l, = 1. If v
is archimedean, this is a consequence of the compactness of I, (R). If v|p, it is a
consequence of the equation ez, = z,. If v is nonarchimedean but prime to p,
the equation ez? = zP implies ¢ is conjugate to an element of KP, which implies
the claim. We conclude that x(e) is a root of unity. Since x(e) lies in a Galois
extension whose degree is at most the product of the order of the Weyl group of G
with the order of the group of automorphisms of the Dynkin diagram, it is one of a
fixed finite set of roots of unity. We have merely to take KP sufficiently small that
the resulting congruence conditions force it to be 1.

(b) Clearly I,(Q)4" N Z(Q) is contained in the centre of Iger, which is finite,
O

Proposition 5.6. If the Main Conjecture 4.4 is true for Sh,(G,X), then so also
is Conjecture 5.1.

Proof. Fix a bijection

(Shp(F), @, x) — [1,,(S(9), 2(¢), x(¥)).

On dividing out by KP, we obtain a bijection

Shic(F) — 11, Sx(9), (5.6.1)
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where Sk () =45 S(p)/KP.

If K? is sufficiently small that Lemma 5.5 holds, then we can apply Lemma
53 with ¥ = (X? x X,}/KP = X, I = I,(Q), C = Z(Q) N K (note that Z is
a subgroup of the centre of I,), a = id, and b = ®" where r = [F,: x(v)]. This
provides us with a bijection

S(‘P)q)r:1 - He I, (Q\XP(ip, €) x Xp(p,€).

Here € runs over a set of representatives for the conjugacy classes in 1,(Q)/C.
Because of the assumption on Z(G) in the second paragraph of this section, when
K is sufficiently small, C = 1. On combining these bijections for the different ¢’s
with the bijection (%), we obtain a bijection

ShK(]Fq) - H(p,e IQO,E (Q)\XP(SD’ 6) X XP(QO’ 6)/Kp'
As K varies, these give the commutative diagrams required by Conjecture 5.1.

Remark 5.7. One obtains a similar statement to (5.1) without the assumption on
Z in the second paragraph, but it is more complicated to state.

Definition 5.8. A pair (p,€) is said to be admissible if there exists an z, €
Xp(p) such that ex, = &7y,

Example 5.9. Consider the case of a Shimura variety Sh(T,z) defined by a
torus. Then (y,¢) is admissible if and only if ¢ = ¢, and the image of ¢ in
X. (T)Gal(Q;]/QP) is equal to Trp(r,)/@, -

Notes. Lemma 5.3 was suggested by [Kottwitz 1984b], §1. The proof of Lemma
5.5 is taken from [Langlands 1979 , p1171].

6. INTEGRAL FORMULAS

In this section, we derive from the Main Conjecture 4.4 an expression for
S Te(T(9) ™M Vi(€)) as a sum of products of (twisted) orbital integrals.

We retain the notations and assumptions of the first two paragraphs of §4. For
simplicity, we also assume that the largest R-split subtorus of Z(G) is already split
over Q, and that G9°T is simply connected.

Triples. Fix a field F, of degree r over x(v). We wish to consider triples (vyo;7, 6)
where

6.1.1. o is a semisimple element of G(Q) that is elliptic in G(R) (i.e., con-
tained in an elliptic torus in Ggr);



Points on a Shimura variety 201

6.1.2. v = (v(£))esp,0o is an element of G(A%) such that, for all ¢, y(£)
becomes conjugate to v in G(Q3');

6.1.3. ¢ is an element of G(B(F,)) such that
N =df 8-06-... -a”‘lé, n = []Fq; IE‘p],

becomes conjugate to v in G(Qa');

6.1.4. for any special z € X, the image of § under the map B(G) — T1(G)rp)
of (B.27) is the class of —p, .

Given such a triple (v9;7, ), we set

Io = G,,, the centralizer of yo in G; because 7 is semisimple and Gd¢ is
simply connected, Iy is connected and reductive.

I = the inner form of Iyg such that I.,/Z(G) is anisotropic; more precisely,
choose an elliptic maximal torus T' of Gy containing ~o, and let 2 be an element of
X such that h, factors through T'; then ad h(s) preserves Iog and induces a Cartan
involution on (Iy/Z(G))r, which we use to twist Iog.

= the centralizer of y(¢) in Gy,;
= the inner form of Gg, such that I, = {z € G(B(F,)) | 2~ ' 6 - oz = §}.
We need to make another assumption about the triple:

(6.1.5) There exists an inner form (I, @) of Iy such that I, is isomorphic to I, for
all £ (including p and oo).

Remark 6.2. For each ¢, I; is an inner form of Iy g, and hence defines a coho-
mology class e(f) € H'(Qg, I3%). There will exist an inner form I of Iy as above if
and only if there is a class g € H(Q, I3?) whose image in [T, HY(Qe, 13Y) is e(£)
for each £. From the exact sequence (B.24),

0— HY(Q,I§Y) — @eH (Qq, I3Y) — A(I2Y)

we see that eq exists if and only if (e(£)) maps to zero in A(I24), and that, in this
case, it is unique. This gives a criterion for the existence of (I, @), and shows that
it is unique up to a nonunique inner automorphism when it exists.

Because yo and -y, are stably conjugate, there exists an 1somorphlsm ap: I Q3 —
1, Q3 well-defined up to an inner automorphism of Iy over Q2'. Choose a system
(I,a,(je)) consisting of a Q-group I, an inner twisting a: Iy — I (isomorphism
over Q*), and isomorphisms jg: Iy, — I; over Q for all £, unramified for almost
all £, such that j; o @ and ap differ by an inner automorphism—our assummption
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(6.1.5) guarantees the existence of such a system. Moreover, any other such system
is isomorphic to one of the form (I, a, (j; o ad he)) where (k) € I?9(A).

Let dx denote the Haar measure on G(A’;) giving measure 1 to K?. Choose a
Haar measure di? on [ (A?) that gives rational measure to compact open subgroups
of I (A’;), and use the isomorphisms j, to transport it to a measure on G(A’;)A,
(the centralizer of v in G(AI;)). The resulting measure does not change if (jg) is
modified by an element of I2¢(A). Write dZ for the quotient of dz by di?. Let f
be an element of the Hecke algebra H of locally constant K -bi-invariant Q-valued
functions on G(Ay), and assume that f = f?- f, where f? is a function on G(A%)
and f, is the characteristic function of K, in G(Q,) divided by the measure of K.
Define

O,(f7) = / Pz yz) dz (6.3.1)
G(AD)\G(AD)

Let dy denote the Haar measure on G(B(F,)) giving measure 1 to G(W (F,)).
Choose a Haar measure di, on I(Q,) that gives rational measure to the compact
open subgroups, and use j, to transport the measure to I,,(Q,). Again the resulting
measure does not change if j, is modified by an element of I*4(Q,). Write dy for
the quotient of dy by dip. Let S be a maximal B(F,)-split subtorus of Gp,)
whose apartment contains the hyperspecial point fixed by K,,. The conjugacy class
o(X )QZI is defined over E, C B(F,), and (1.7) shows that it is represented by a
cocharacter p of S defined over B(F,) and moreover that the coset

GW(Fy)) - up) - GIW(Fy))
is independent of all choices. Let ¢, be the characteristic function of this coset, and

define

TO5(4,) = / br (v~ 60 ())d (6.3.2)
I(Qx)\G(B(Fy))

Since I/Z(G) is anisotropic over R, and since we are assuming that the largest
subtorus of Z(G) split over R is already split over Q, I(Q) is a discrete subgroup
of I(A%), and we can define the volume of I(Q)\I(A;). It is a rational number
because of our assumption on di? and di,. Finally, define

I(v0;7,6) = I(0; 7, 6)(f7, 1) = vol(I(Q\I(Ay)) - O,(f7) - TOs(¢,)  (6.3.3)
Proposition 6.4. Let

Y? = {g € G(A})/K” | vg = g (mod K)"}
Y, ={g € G(B(F)/W(F,)) | g~ - 609 € GW(EFy)) - u(p) - GW (Fy))}-
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When we take f? to be the characteristic function of K?, then
Card(I(@)\Y? x Y3) = I(0; 7, 8) (£, 7).

Proof. We have

Card(I(Q\Y? x Y;) = > (g7 vg) - (™2 8ch)
l9,RIET{QN\G(A)x G(B(F,))

/ (g~ 1g) - 2 (h™"6ch)
HQ\G(A)xG(B(F,)

= vol(I(Q)\G(A]), x Gso (B(F,))-

p(g_l ¢r(g—1609)-

/G(A;)y\a(A;) /Gaa(@p)\G(B()Fq))

But I(A}) ~ G(A%) and I(Q,) = G5,(Qp), and so this proves the formula. a

Definition 6.5. Two triples (y0;7,8) and (yp;7,4’) are said to be equivalent,
(v0;7,8) ~ (707, 6') if o is conjugate to 7§ in G(Q), v(£) is conjugate to v'(£)
in G(Qg) for each £ # p,00, and § is o-conjugate to &' in G(B(F,)).

Remark 6.6. The integral I(o;, §) is independent of the choices made, and, it
is implicit in the work of Kottwitz that, appropriately interpreted,

(v0;7:6) ~ (v0; 7', ') = I(v0;7,8) = I(v; 4, 8).

The triple attached to an admissible pair (p,¢). Let a: H — H* be an
inner twist of a group H over k (recall that this means a is defined over k?!). We
say that a maximal torus T* of H* comes from H if there is a torus T C H and
a g € G*(k?) such that adg o a maps T onto T* and is defined over k.

Lemma 6.7. Let a: G — G* be an inner twist of G. If T* C G* comes from G
everywhere locally and T*/Z(G*) is anisotropic for at least one prime of Q, then
T* comes from G globally.

Proof. See [Langlands and Rapoport 1987 , 5.6.] O

Proposition 6.8. Any admissible pair (p,€) is isomorphic to an admissible pair
(¢',€") with ¢ special, say ¢’ = ¢, and € € T(Q) where (T,z) is a special pair
in (G, X).

Proof. 1Ibid. 5.23. O
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Lemma 6.9. For any special ¢, the o-conjugacy class b, is represented by an
element § € G(B(F,)); 6 is well-defined up to o-conjugacy.

Proof. This is clear from its definition. O

Now consider an admissible pair (p,€). After (6.8), we can assume that ¢ is
special and that ¢ € T(Q). Write v for € regarded as an element of G(Q), and
write 7 for the image of ¢ in G(A%).

Lemma 6.10. The triple satisfies the conditions (6.1), and isomorphic pairs give
equivalent triples.

Proof. The conditions (6.1.1-4) follow easily from the definition. The group I can
be taken to be I, .. O

Thus we have a map t: [p,€] = [y0;7, 8] from the set of isomorphism classes
of admissible pairs to the set of equivalence classes of triples. Call a class [yo;7, §]
effective if it arises from an admissible pair, and a triple (vo;7,6) effective if it
belongs to such a class.

Proposition 6.11. Fix an effective triple (vo;~,8); then the number of isomor-
phism classes of admissible pairs (p,€) with t(p,€) = [yo;7, 6] is equal to

c(y0) =ar Card(Ker(Ker'(Q, Ip) — HY(Q, G))).

Proof. Fix an admissible pair {(@o,€0), and consider a second admissible pair
(p,€). Then Hom((yo,€0),(p,€)) is a I, c,-torsor, and hence defines a class in
HYQ,I,y.,)- The fact that (¢o,20) and (p,€) define the same triple implies that
the class is trivial locally, and it maps to zero in H'(Q, G*®) because a torus has
only one admissible pair up to equivalence. Thus (p,e) — Hom((vo,€0), (¢,€)) is
a map from the set of admissible pairs with t(p,¢) = [vo;7, 6] into the set

Ker(Kelrl (Q,Ipg,e0) — HY(Q, Gab)))

and it is easy to see that this is a bijection. An elementary lemma [Langlands and
Rapoport 1987, 5.24] shows that the cardinality of this set does not change when
I, ¢, is replaced with Iy, and, because G satisfies the Hasse principle, G® can
be replaced with G. 0

Proposition 6.12. Let (p,¢) be an admissible pair, and let Sk (p,€) be the set
defined in §5. Let {~;7,6) be the triple associated with (p,¢), and take fP to be
the characteristic function of K?. Then

Card Sk (p, €) = I(70;7,6).
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Proof.  'We know from (6.4) that I(yo;v,6) = Card(I(Q)\Y?xY,), and it is obvious
from the definitions that I = I, . and Y? = XP(ip,e). We leave it as an exercise to
show that Y, = X, (p,€). a

Corollary 6.13. If the main conjecture 4.4 is true for Sh,(G, X), then
Card(Shy(Fy)) = D c(70) - I(70; 7, 6)
(v0;7,6)
where the sum is over a set of representatives for the effective triples.
Proof. Combine (6.12) with (5.6). O

Addition of a local system. A rational representation £: G — GL(V) of G
defines a Qq-local system V'(€) on Sh,(G, X).

Proposition 6.14. If the Main Conjecture 4.4 is true for Sh,(G,X), then
DoTH@ [ VE©) = Y cr0) 10057, 6) - Tré(v0)
t {(7077,6) :

where first sum is over the points of Shy(F,) and the second sum is over a set of
representatives for the equivalence classes of effective triples.

Proof. When ¢ is taken to be the trivial representation of G on V = Q, this is
just (6.13). To see that the formula is correct, it suffices to check it in the case of
a torus, and this is obvious from the definitions. a

Addition of a Hecke operator.
Theorem 6.15.  Assume that (4.4) holds for Sh,(G, X). Then for any g € G(A"),

1
20 TH(T(9) D Ve(€)) = (0.6 €(10) 1(7037,6) - Tr (o),

where, in the definition of I(~o;~,6), fP is taken to be the characteristic function
of K, - g+ K, and the sum is over a set of representatives of the equivalence classes
of effective triples

Proof. When g = 1, this is (6.14), and the proof in the general case is similar.
a

Remark 6.16.

(a) In the statement of (6.15), one can replace g with any fP as at the start of
this section.

(b) In (6.14) and (6.15), one can replace ¢ with a representation over a number
field.
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Notes. The definition of I(~o;7, 8) follows [Kottwitz 1990, §3] very closely, some-
times word for word.

7. A CRITERION FOR EFFECTIVENESS

In this section derive a criterion for a triple (vo; 7, 8) to arise from an admissible
pair {p,€). As a consequence we find that the formula conjectured by Kottwitz
[Kottwitz 1990, 3.1] follows from the Main Conjecture 4.4.

We retain the notations and assumptions of the second paragraph of §6.

Definition of the group ¢V (I;/Q). Let v be a semisimple element of G(Q), and
let I be the centralizer of vo. Because G9" is simply connected, Iy is connected.
Let I} = Iy N GY". There is an exact sequence

1 I, —I)—G*® -1

Because G is simply connected, 71(G) = 71(G?P), and so (see B.2a) there is an
exact sequernce:

1 — m(ly) — mi(lo) — m(G) — 1.
Recall (Appendix B) that for a group H over Q, A(H) = m(H)r tors Where
I'= Gal(QaI/Q). We write A¢(H) for A(HQZ) =df ﬂ-l(H)I‘(l),torm where I'(¢) =
Gal(Q3'/Q¢). An embedding Q* < @3 induces an inclusion T'(£) < T', and hence

a map

Ag(H) — A(H).

In (B.22) we construct a canonical map:
ap: H Qe H) — Au(H).

On composing the boundary map G**(Q¢) — H'(Qq, Ig) with ay;, we obtain a
canonical map
G (Qe) — Ae(Tg).
Definition 7.1. The group ¢V(Iy/Q) is the quotient of A(I§) by the subgroup
generated by the images of the maps G**(Q,) — A(I}), i.e., it is the group making
the sequence
@an (G**(Qr) — A(Ly) — €V (Ip/Q) — 1

exact.

At the end of this section, we show that €V (I/Q) is the dual of Kottwitz’s group
t(I5/Q), which explains our notation.
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A criterion for the existence of an admissible homomorphism satisfying
local conditions. Let ¢: P — & be a homomorphism, and let () be a family
of homomorphisms B(£) — & (¢). We seek necessary and sufficient conditions for
there to exist a homomorphism ¢1: P — B¢ such that

(7.2.1) P =~ ¢ (i.e., the restrictions of p and ¢; to P are conjugate);
(7.2.2) p1(€) ~ @y for all £;

(7.2.3) ¥5° ~ ¢ (i.e., the composites of ¢ and ¢; with Bo — B qab are isomor-
phic).

Obviously, a necessary condition for this is that

(7.3.1) p(O)* = ¢f;
(7.3.2) 2P = p(£)2b.

Henceforth we assume these two conditions. Let I = Aut(p). The composite of
Igar — Ggar — G?Q‘i. is surjective, and is defined over Q. We let I’ be its kernel, so
that the sequence

1-I 5T -G 51

is exact, and we define £V(I/Q) as above. Consider the exact commutative diagram,

GG (Q)

HY(Q,I) —— &H'Q,I') —— A(I)

! !

HYQ,I) —— @HY(Q,I) —— A()

!

HI(Q,Gab) - EB(HI(Qz,Gab)

where the sums are over all primes ¢ of Q.

Now return to ¢ and ;. Because of our assumption (7.3.1), Hom(p(£), ¢¢)
is a torsor over Ig,, and we write e, for its class in H1(Qg,I). Because of our
assumption (7.3.2), each e; maps to zero in H'(Qq, G°), and so we can lift e,
to an element ¢, € H'(Qg, I"). Let e(ip, () be the image of the family (e}) in
8(1/Q). Clearly it is independent of the choice of the e).
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Proposition 7.4. There exists a yp; satisfying such that the conditions (7.2) if
and only if e(p, (p¢)) = 1.

Proof. If ey, (¢e)) = 1, then we can modify the choice of the €,’s so that the
family (e}) maps to zero in A(I'), and so arises from an element eg € H'(Q, I').
Take @1 = ¢ - eg. O

A criterion for vy to arise from an admissible pair. When the Shimura
variety is defined by a torus T, we saw in (5.9) that (¢z,¢), € € T(Q), is an
admissible pair if and only if € and Trp(r, )/, (1z) have the same image in X.(T).
We want to generalize this to other Shimura varieties.

Consider an element v € G(Q), and write Iy for G,,. Let S be the largest
split torus in the centre of (Io)g,, and let H be the centralizer of S in Gg,; thus

S C Z(Il)g, C HC Gg,-

Because G is unramified over Q,, so also is H, and Proposition B.16 provides us
with a map
/\H : H(Qp) g Wl(G)F(p)

where I'(p) = Gal(Qg' /Qp). On the other hand, X provides us with a conjugacy
class ¢(X)p) of cocharacters of GG. Assume that there exists an element p €
¢(X)p(r factoring through Hpy. Then p factors through a maximal torus T of
Hpr), and so defines an element of z € m(H). It is stable under Gal(B(F)/E,),
and so Trg, /g, 2 is fixed by T'(p).

Proposition 7.5. There exists an admissible pair (p,£) with ¢ conjugate to g
if and only if z exists and

)\H("YO) = TrB(]Fq)/Q,, z in ﬂl(H)F(p).

Proof. See [Langlands and Rapoport 1987, 5.21, p190]. O

Definition of the Kottwitz invariant. Consider a triple (vyg; 7, §) satisfying the
conditions (6.1). We wish to attach to (yo;7, §) an invariant a(yo;~, ) € €V (1/Q).

First consider a prime £ # p,00. Choose a g € G(Q3') such that gyog™' = ..
Then

T gl g T(0) — L(QF)

is a 1-cocycle. From its construction, we see that its cohomology class lies in the
kernel of

HYQu, I) — HY(Qq, G).
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From (B.22) we have a commutative diagram:

G**(Q¢) —— HY(Qe, Ij) —— H'(Q¢, o) —— H'(Q¢,G*)

|~

Ag(I).

Lift the cohomology class to H'(Qg, I)) and map it to Ag(I}); we then obtain an
element ay € Ay(1}) of whose image o in 8(Ip/Q) is independent of the choice of
the lifting. It is zero for almost all £.

Next consider £ = p. We are assuming N'§ is conjugate to o in G(Qg‘). A
theorem of Steinberg shows that H!(B,Iy) = 0, and therefore AN'§ is conjugate
to 7o in G(B). Choose a ¢ € G(B) such that cyoc™! = N§. Define b € G(B)
by putting b = ¢~ 16cc. On applying ¢ to the equation cyoc™! = N§, we find
that b € Io(B). Since c is well-defined up to right multiplication by an element of
Iy(B), the element b € Iy(B) is well-defined up to o-conjugacy in Iy(B), and hence
determines a well-defined element of B(lo g,). Using the map

B(Io) — m1({o)r(p)

of (B.27), we obtain an element «, € 71(lo)r(p). Because of condition (6.1.4), the
image of a, in T (G)r is [—pz].

Finally we consider £ = co. Choose an elliptic maximal torus T of Gr containing
~vo. Then T is a maximal torus in Iy as well, and we can choose an & € X such
that the image of h; is contained in Tg. Now p, defines an element of 1 (Zo)r (o)
whose image in m1(G)r is [pz).

Consider the diagram:

mIrey —— mo)repy —— (@) —— 0

l ! !

mi(ly)r —— mlo)r —— m(Gr —— 0
T (1)) r(eey — T1({0)r(o0) — T1(G)r(cc) — 0.

The sum of the images of a, and @« in m(lo)r maps to zero in 71(G)r and so
lifts to an element of m1(I})r whose image (o, + @)’ in €V(Iy/Q) is independent
of the choice of the lifting. Define

04(70, v 6) = (ap + aoo), + 2l¢p,oo aé
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Lemma 7.6. Let (yo;7,6) and (v);v,6') be equivalent triples, and let v} =
ad g(v0). Then adg defines a map ¢¥(L,,/Q) — €' (I, /Q) which sends a(0;7, 8)
onto a(vp; ', 6").

Proof.  Omitted. O

Definition 7.7. A triple (y0;7,6) satisfying the conditions (6.1) and such that
a(y0;v,8) =1 is called a Frobenius triple.”

Remark 7.8. The condition a(yo;7,d8) = 1 implies (6.1.5)
of the first condition the second may be omitted.

, i.e., in the presence

A characterization of effective triples.

Theorem 7.9. A triple (o;7, ) is effective if and only if it is a Frobenius triple
and satisfies the condition of (7.5).

Proof. A routine calculation shows that the condition is necessary. Conversely,
consider a Frobenius triple (vyo; v, §) satisfying the condition of (7.5). After replacing
7o by a conjugate element, we can assume that there is a special pair (T, z) C (G, X)
such that vo € T(Q). Now the condition a(yo;7,8) = 1 and (7.4) imply that we
can modify o, to obtain a ¢; giving rise to (vo;7, 8). O

Corollary 7.10. If the Main Conjecture 4.4 is true for Sh,(G, X), then

e Te(T (D)D) = (060 €00) - 17037, 6) - Tré(70)

where the second sum is over equivalence classes of Frobenius triples (vo;7,8).

Proof. Combine (6.15) with the theorem, noting that if a Frobenius triple does
not satisfy the condition of (7.5) then it contributes zero to the sum on the right.
a

Remark 7.11. The formula in (7.11) is exactly the formula (3.1) of [Kottwitz
1990], except that he does not assume the weight to be defined over Q. As we
noted in the introduction, probably this condition can be dropped throughout the
article if the pseudomotivic groupoid is replaced by the quasimotivic groupoid.

Comparison with Kottwitz’s definition. For the convenience of the reader,
we verify that €¥(Ip/Q), as defined above, is the dual of the group €(Ip/Q) defined
in [Kottwitz, 1986, 4.6]. For simplicity, we continue to assume that G4’ is simply
connected. We assume the reader is familiar with the theory of the dual group (see
the end of Appendix B).

"This notion is a modification, due to Kottwitz, of Langlands’s notion of a Frobenius pair.
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As before, let Iy be the centralizer of a semisimple element o of G, and let I
be the centralizer of -y in G’der, ie, Ip=1IyN G From the exact sequence

0— I} — Iy — G*® — 0, (*)
and the observation that Z(GY) = (G®)V, we obtain an exact sequence
0— Z(GY) — Z(Iy) — Z(I}V) — 0.

The boundary map
Z(I,")" — HY(Q,Z(G"))

factors through 79(Z(15Y)"), and Kottwitz defines €(Ip/Q) to be the subgroup
of m9(Z(I3¥)") consisting those elements whose image in H'(Q, Z(GV)) is locally
trivial at all primes of Q. Recall (B.5) that, for any group H, A(H) is the dual
of mo(Z(HY)"), and so we can restate the definition as follows: t(I,/Q) is the
subgroup of A([j)" consisting of those elements whose image in H'(Q, Z(GV)) is
locally trivial. Consider the diagram

Hl/Q) —— A(lp)"

|

Ag([())v —_— A[(I(/])v —— Hl(lez(Gv))

where we have written A,(H) for A(Hg,). The bottom row is exact (see [Kottwitz
1984a, 2.3]), and so £(Io/Q) is the subgroup of A(I§)V of elements whose image in
Ag(I5)V lifts to A¢(Io)Y for all £. When we take duals,

A(l) — ¥IH/Q)Y —— 0

I

A(lp) ——  Al(Io),

we see that the dual €(Io/Q)" of €(Io/Q) is the quotient of A(I}) by the subgroup
of elements that are images of elements of A¢(I) mapping to zero in Ay(Ip). In
other words, if we let K (£) = Ker(A,(Iy) — A¢(Ip)), then €V (Io/Q) is the quotient
of A(Ip) by the subgroup generated by the images of the groups K (¢).
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Let £ be a prime of Q, and consider the diagram:
HY (Qq, I§®) —— HYQq, I°)

G Q) —— HY(Q,I)) —— HY(Qq, o)

(21
I arg

Al(I)) —— All)

? — ?.

When £ is finite, the maps « are isomorphisms (see B.22), and so
K (&) =Im(G™(Q¢) — As(Ip)).

Now suppose £ = oo, so that Q¢ = R. It is clear from the sequence (x) that
Ilder — der and so the top horizontal arrow is an isomorphism. The bottom
horizontal arrow is

m1(Ig) — m1(Lo),
which (B.2a) shows to be injective, and a diagram chase shows that
K(o0) = Im(G* (R) — Aoo(1})).
Thus we can conclude that &(Ip/Q)Y is the quotient of A(I;) by the subgroup
generated by the images of the groups G(Qy), i.e., that €(Io/Q)Y = ¥ (I,/Q).

We leave it as an exercise to the reader to prove that the our definition of
a(70;7,06) agrees with that of [Kottwitz 1990, §2]; in fact, apart from the description
of £(Ip/Q), our definition is identical to that of Kottwitz.

Notes. The sources have been noted in the text.

8. STABILIZATION

In this section, we summarize the results of [Kottwitz 1990, §4-§7] concerning
the stabilization of the expression on the right in (7.10):

3" c(y0) - vol(T(Q\I(Ay) - Oy (f7) - TOs($y) - Tr £(0) (8.0.1)
(v0;7,6)

Here the sum is over a set of representatives for the equivalence classes of Frobenius
triples (v0;7,6). As does Kottwitz, we assume that G9° is simply connected and
that the largest R-split subtorus of Z(G) is already split over Q.
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Statement of the results. Write ¢ for the representation ¢ ®g C. Fix an
embedding Q¢ — C and write f£ for the composite of fP with Q; — C. There is
a unique Haar measure diy, such that di? - dij, - di is the canonical measure on
I(A). Let Ag be the maximal Q-split subtorus of the centre of G, and let Ag(R)*
denote the identity component of the topological group A¢(R). Write e(I(v)) for
the signs defined in [Kottwitz 1983], and set

e(v,8) = [[ e @)).

If af7y0;77,8) =1, so that there exists a group I over Q whose localizations are the
groups Iy, then e(y, §) = 1 by the main result (ibid.)
As in [Kottwitz 1990, §4], (8.0.1) can be rewritten as

(Y DN < a(r0;7,6), 8 > -e(7,6) - O4(f2) - TOs($r)-

Yo £ {7v,6)
Trée (o) - vol(Ac(R) M \I(c0) (R)) ',

where the first sum is over a set of representatives for the G(Q*)-conjugacy classes
of semisimple elements vo € G(Q) that are elliptic in Gg, the second sum is over
the elements of & of (1y/Q), and the third sum is over a set of representatives for
the equivalence classes of pairs (v, ) such that (vy;7,8) is a Frobenius triple. Here
7(Q) is the Tamagawa number of G.

We assume that the reader (unlike the author) is familiar with elliptic endoscopic
triples (H, s, 19)—see Kottwitz (1984a), §7.

Assuming three standard conjectures on the transfer of functions on p-adic
groups, and a global hypothesis, which we list below, Kottwitz constructs the fol-
lowing functions.

(a) A function A” € C°(G(A%)) such that

SO, (WF) =Y AP (v, 7) - e7(7) - O, ()

for every (G, H)-regular semisimple element vy € H (A’;). Here €P(7) is a
product of the signs e(G. () for £ # p,co, and AP(yy,7) is a product of
local transfer factors Ay(yw,7) for £ # p, co.

(b) A function h, € C°(H(Qp)) such that

v (hp) = Y < B(10;8),5 > -Ap(ym,7) - e(I) - TOs(¢r).-
6
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for every (G, H)-regular semisimple character vy € H(Q,). If 5 is unram-
ified, then h;, belongs to the Hecke algebra H(H(Q,), Ku); in general, it is
a quasi-character on H(Q,) times a function in H(H(Q,), Kg).

(c) A function ho, € C*(H(R)), compactly supported modulo Ag(R)* such
that

SOy (heo)
=< B(v0:8),8 > Do (vH,70) - e(I) - Tt &e(0) - vol(Ae(R) T\I(R)) ™!

for every (G,H)-regular semisimple v € H(R) which is elliptic, and is zero
for nornelliptic such elements. Here vy is an element of T(R) that comes
from vy and I is a certain inner form of I,,.

Write «(G, H) for the positive rational number
(G, H) =7(G) - 7(H)™! - Card(Aut(H, s,n)/H*(Q))~!,

and ST} (h) for the (G, H)-regular Q-elliptic part of the stable trace formula for
(H,h),

ST (h) = ) Card((H., /HY,)(@) ™" - 7(H) - SOy, (h).
YH

Theorem 8.1. Assuming the existence of functions h as above, (8.0.1) is equal
to '
> WG, H)- ST (h) (8.0.3)
£
where the sum is over a set £ of representatives for the isomorphism classes of the
elliptic endoscopic triples for G.

Proof. This is Kottwitz (1990}, 7.2. 0

Comparison with Rogawski’s article. It is left as an exercise to the Editors
to reconcile (8.0.3) with the notation in Rogawski’s article.

The conjectures used in the proof of 8.1. In constructing h? Kottwitz as-
sumes the “fundamental lemma” for H, G, and the unit element of the unramified
Hecke algebra of G at all but a finite number of primes of Q, and he assumes the
following conjecture.

Conjecture 8.2 [Kottwitz 1986, 5.5]. Let F be a local field of characteristic zero,
and let G be a connected reductive group over F. Let (H,s,n) be an endoscopic
triple for G, and choose an extension of n : HY — GV to an L-homomorphism
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n : YH — LG. There should be a correspondence (f, f) between functions
f € CX(G(F)), f € C®(H(F)), such that

SO‘KH(fH) = ZA(’YH"‘Y) : O’Y(f)

for every G-regular semisimple element vy € H(F'). The sum runs over a set (pos-
sibly empty) of representatives for the conjugacy classes in G(F) belonging to the
G(F?)-conjugacy class obtained from ~vg in the following way: choose a maximal
torus Ty in Hpa containing vy and an embedding j : Ty < Gpa (canonical up
to G(F?")- conjugacy); the conjugacy class is that containing j(vg). The transfer
factors A(yH,v) (complex numbers) and the correspondence will depend on the
choice of .

In constructing h,,, Kottwitz assumes the “fundamental lemma” for the homo-
morphism of Hecke algebras

H(G(F), Kr) = H(H(Q,),Kn)

[Kottwitz 1990, p180].

Finally, he assumes the “global hypothesis” for the transfer factors.

There is a statement of the “fundamental lemma” (in the case that G is
simply connected) in the introduction to Kottwitz (1986). The® lemma is proved
for the groups of interest to the seminar in Blasius and Rogawski (1991) (using
sone calculations from Kottwitz (1990)).

Conjecture 8.2 was proved in the archimedean case by Shelstad for G-regular
pairs. It is only known in a few p-adic cases. For p-adic unitary groups in three
variables, it is proved for G-regular pairs in Langlands and Shelstad (1989). The
archimedean and p-adic cases are quoted in Rogawski {1990), 4.9.1, in the G-regular
case, and the extension to the (G, H)-regular case is carried out in Chapter 8 of the
same work.

Concerning the global hypothesis, Langlands and Shelstad define local transfer
factors for pairs of G-regular elements, well-defined up to a non-zero scalar, and
they show that there is a choice such that the global hypothesis is satisfied. Kottwitz
needs transfer factors for pairs of (G, H)-regular elements, and he needs to know
that they can be chosen so that the global hypothesis holds. Thus it needs to
be checked that the local transfer factors of Langlands and Shelstad extend by
continuity to (G, H)-regular pairs, and that the global factors satisfying the global

8] am grateful to Jon Rogawski for a message on which the rest of this section is based.
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hypothesis for G-regular pairs also satisfy it for (G,H)-regular pairs. (According to
Rogawski) this will probably be straightforward, but has not been written down.
In any case, it is easy to check everything for unitary groups in three variables,
because of the explicit form of the transfer factors.

Notes. The sources have been noted in the text.

APPENDIX A. GROUPOIDS AND TENSOR CATEGORIES

The notion of a groupoid is a natural generalization of that of a group. Affine
groupoids classify nonneutral Tannakian categories in exactly the same way that
affine group schemes classify neutral Tannakian categories.

Throughout this section, Sp is the spectrum of a field kg of characteristic zero,
and S is an affine scheme over Sg.

Groupoids in sets. A groupoid in sets is a category in which every morphism
has an inverse. Thus to give a groupoid in sets is to give a set S (of objects), a set
G (of arrows), two maps t,s: G =3 S (sending an arrow to its target and source
respectively), and a law of composition (map over S x S)

s,S,t 8,8

0:G x G—GwhereG x G={(h,g) e GxG|s(h)=t(g)}
0,

satisfying the following conditions: each object has an identity morphism; compo-
sition of arrows is associative; each arrow has an inverse. We often refer to G as a
groupoid acting on S.

A groupoid is said to be transitive if the map

(t,8): G—> S xS,

is surjective, i.e., if for every pair of objects (b, a) of S there exists an arrow a — b.

Example A.1. A group G defines a groupoid in sets as follows: take S to be
any one-element set, so that there are unique maps t,s: G — S, and take o to be
multiplication on G. Conversely a groupoid G acting on a one-point set S is a
group.

Let G be a transitive groupoid. We often regard G as a set over S x S using
the map (t,s). Write G, for the fibre of G over (b, a); thus

Gro={9€G|s(g) =a, t(9) =b} ={g|g: a - b} = Hom(a, b),
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and there is a law of composition
Gc,b X Gb,a - Gc,a-

This law makes G, =4f Ga,o into a group and Gy, into a right principal homoge-
neous space for G,. The choice of an element wp , € Gy, defines an isomorphism
adupe: Go = Gb.

The kernel G of G is the family (Ga)acs. It can be thought of as a relative
group over S.

If G is transitive and G, is commutative for one (hence all) a € S, then we
say that G is commutative. In this case the isomorphism adupq.: G, — Gy is
independent of the choice of us ., and so there is a canonical isomorphism Gg x § —
GA for any 0 € S, i.e., G® is a constant group over S.

Example A.2. Let S be a topological space. The fundamental groupoid 11 of
S is the groupoid acting on S for which Il , is the set of paths from a to b taken
up to homotopy. The law of composition is the usual composition of paths. In this
case, the group II, is the fundamental group 7(S, a).

A morphism p: P — G of groupoids acting on ' is a function that, together
with the identity map S — S, is a functor of categories. Let P and G be two
groupoids acting transitively on-S, and let ¢ and 9 be morphisms P — G. A
morphism «: ¢ — Y is a morphism of functors. Thus it is a family of arrows
ag: a— a in G, indexed by the elements of S, such that the diagrams

a L) a
l«:(pb,a) U(pb,a)

b —=

commute for all p,, € P,,. Note that every morphism a: ¢ — 1 is an isomor-
phism. Write Isom(yp, 1) for the set of (iso)morphisms ¢ — 1. An element (a,)qes
of Isom(p, 1) is determined by a single component «,, because for any pp o € Ph.a,
ap = 1Y (Pp,a)00aop(pre) . Let Aut(yp) = Isom(p, o). It is a group, and Isom(¢p, 1)
is either empty or is a right principal homogeneous space for Aut{y) over S.

Assume that P is commutative, so that P2 = Py x S, and let I(p) be the
subset of G such that

I(p)sa={g9:a—>b|gop(p) =P ey alpe P}
The restrictions of ¢, s, and o to I{y) define on it the structure of a groupoid acting
on S. The group I(yp), is the centralizer of ¢(P,) in G,, and an element up o € Py,

defines an isomorphism ad ¢(up o) from I(p), to I(p), that is independent of up 4;
thus I(p)® = I(p)o x S for any 0 € S. Note that Aut(p) = I(p)=.
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Groupoids in schemes. Recall that Sy = Speckg. For any affine scheme S
over So, an So-groupoid (in schemes) acting on S is a scheme & over S
together with two Sp-morphisms t,s: & = § and a law of composition (morphism
of § xg, S-schemes)

0:® x &G

8,5,

such that, for all schemes T over Sy, (S(T),8(T),(t,s),0) is a groupoid in sets.
We also refer to & as a ko-groupoid acting on S, or as an S/Sy-groupoid.

A groupoid is said to be affine if it is an affine scheme, and it is algebraic if
it is of finite type over S xg, S. An affine groupoid is the projective limit of its
algebraic quotients.

Henceforth, all groupoids will be affine.

A groupoid is said to act transitively on S, or be a transitive S/So-groupoid,
if the map (t,s): & — S x5, S makes it into a faithfully flat S x5, S-scheme.

Example A.3. An Sy/So-groupoid is just an affine group scheme over Sp. It is
automatically transitive.

For a scheme (b,a): T — S'x35, S over Sxg,5, we write &, , for (b,a)*®. Note
that b and a are objects of the category S(T'), and &, can be thought of as the
scheme of arrows a — b,

&y . = “Hom(a,d)”.

The law of composition provides fnorphisms (of schemes over T')
®c,b XT ®b,a - 6c,a-

This law makes B, =4 &, 0 =4 (a,a)*® into an affine group scheme over T, which
is flat if & is transitive.
A morphism a: & — &' of §/S;-groupoids is a morphism of S x g, S-schemes

such that, for all So-schemes T, a(T') is a morphism of groupoids in sets acting on
S(T).

Example A.4. Let V be a locally free Og-module of finite rank. For a scheme
(b,a): T — § x5, S over S xs, S, let Isom(a*V,b*V) be the scheme representing
the functor that sends a T-scheme ¢: T’ — T to Isomo,, ((ac)*V, (bc)*V). There
is an affine groupoid &(V) such that, for any scheme (b,a): T — S xg, S over
S x So S s

&(V)b,a = Isom(a*V,b*V).

It is transitive.
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More generally, suppose V' has a tensor structure, i.e., a family t = (¢;) with
t; € T(S,V® © VV®si) for some 7; and s;. Then we can define an affine groupoid
&(V,t) such that &(V,t), is the subscheme of I'som(a*V,b*V) whose points are
the isomorphisms preserving the tensors (or preserving the tensors up to a constant).
It need not be transitive.

Pull-backs of groupoids. Let & be an 5/Sp-groupoid, and consider a commu-
tative diagram:

R
| |
So — S}

If & is an S/Sy-groupoid, then the pull-back of & relative to
S xs, 8 5 8 xg S

is an S’/ S}-groupoid.

Example A.5.

(a) Let Go be an affine group scheme over Sy, regarded as an Sg/.Sp-groupoid.
On pulling it back to S, we obtain an S/Sy-groupoid

Ba, =df Go X5, (S x5, 9),

which is called the neutral groupoid defined by Gy. In the special case
that Gy is the trivial group, &g, = S X g, S and is called the trivial S/So-
groupoid.

(b) If & is an S/Sp-groupoid and u: T — S is a morphism of affine schemes
over Sp, then the inverse image of & by u X u is a T'/Sg-groupoid, which
we denote by &r.

(c) If & is an S/Sp-groupoid, then the pull-back of & relative to
S=8x%xg85—85xg, S

is an §/S-groupoid, ie., a group scheme over S. This is the kernel of &
(see below).
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Descent data. Let S — Sy be a morphism of schemes, and let X — $ be a
scheme over S. A descent datum on X relative to S/Sp is a map

w: pr;i X — pry X (over S xg, S)
satisfying the cocycle condition:
pria(u) = pria(u) o prig(w): pri X — pry X (over S x5, S x5, 5).

Here pr; is the projection onto the i*" factor and pr;; Is the projection onto the
(i,7)*" factor.

It is often easier to think of descent data in terms of points. For each S,-
scheme T' and point (a,b) € (S xs, S)(T) a descent datum gives a morphism
Ube: a*X — "X over T, and the cocycle condition asserts that for every point
(a,b,¢) € (S x5, 8 X505 SYT), Ucsa = Uep © Upg-

The set of pairs consisting of an affine S-scheme X and an S/Sp-descent datum
can be made into a category Desc(S/Sp) in an obvious way. An affine scheme X
over So defines an object (X, u) of Desc(S/So) with X = X4 x 5,9, and under our
assumption that So is the spectrum of a field and .S is affine, the map Xo +— (X, u)
defines an equivalence of categories:

Affgo — DeSC(S/So).

Here Affs, denotes the category of affine schemes over Sy.
Let G be a group scheme over S. An isomorphism

u: pr; X — pry X (over S xg, 9)

such that priz(u) differs from prjs(u) o priy(u) by an inner automorphism of G
defines the structure of a Sp-band on Gj the structure defined by an isomorphism
u' differing from u by an inner automorphism is not distinguished from that defined
by u (see Deligne and [Milne 1982, p223], or [Giraud 1971, IV.1], for a more precise
definition).

Kernels of groupoids. Let & be an 5/Sy-groupoid. The kernel of & is
G =qf &2 =g¢r A*®, A: S — Sxg, S (diagonal morphism).

It is an affine group scheme over .S, and it is faithfully flat over S if & is transitive.
We say that & is commutative if it is transitive and G is commutative.
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Let & be an S/Sp-groupoid with kernel G. Then prj G acts on & over S xg, S
and makes it into a right torsor. The groupoid & acts on G by conjugation:

(g.2) > goxzog™, ge&(T), zeG(T).

Let & be a transitive S/Sp-groupoid, and let u be a section of & over S xg, S.
Then u defines a morphism

@ =qr adu: prf &> — pry &2

such that priz(p) differs from pris(p) o priy(¢) by an inner automorphism. If u is
replaced by a different section, then ¢ is replaced by its composite with an inner
automorphism (because & is a prj ®“-torsor). Thus u defines the structure of an
So-band on &2 . In terms of points, @p o = ad(upe): Ba — Bp, pris(yp) = ad(uca),
and pris(p) o pris(p) = ad(ue,b © Up,a)-

A section u of & over § xg, S will be called special if ¢ = adu satisfies the
cocycle condition pris(y) = pris(p) o prig(p). Such a u defines a model Gy of
G = B2 over kg. Note that if G is commutative, then every section of & over
S X g, S is special, and that the model Go of G defined by a section is independent
of the choice of the section.

Let & and &’ be groupoids acting on S. The restriction to the diagonal of a
morphism «: & — &’ is a homomorphism of group schemes a®: 2 — &', If
® and &' have special sections u and v/, and « maps u to v/, then a® is defined
over ko.

Let & and $) be S/Sp-groupoids with kernels G and H, and let ¢: G — H be
a homomorphism. If there is given an action of & on H compatible with its action
on G, then the prj H-torsor deduced from & by pushing out by the morphism
prry : pry G — pry H is endowed with the structure of a groupoid whose kernel is
H. We denote it by ¢.®. (See [Deligne 1989, 10.8.])

Example A.6.

(a) The kernel of the neutral gerb ¢, is G =4 Go x5, S. The identity section
of G over Sy defines a canonical section of &, over S xg,.S. This section
is special, and defines the model Gy of G.

(b) The kernel of (V) is GL(V) with its canonical structure of a band, namely,
the isomorphism adu: pri GL(V) — pry GL(V) defined by an isomorphism
u: priiV —pr; V.
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Tensor categories. A tensor category is a category T together with a functor
®: T x T — T and sufficient constraints so that the tensor product of any finite
(unordered) set of objects of T is well defined up to a unique isomorphism. In
particular, there is an identity object 1 (tensor product of the empty set of objects)
with the property that

1 X=X=X®I1

for all objects X in T, an associativity constraint (functorial in X, Y, Z)
dxvz: X0 Y ®Z) S (XeY)oZ,
and a commautativity constraint (functorial in X, Y)
Yxy: XY S Y X

Let (T,®) and (T’,®’) be tensor categories. A tensor functor from (T,®)
to (T/,®') is a functor F: T — T’ together with a natural isomorphism

exy: F(X)®' F(Y) > F(X®Y)

compatible with constraints. In particular, for any finite family (X;) of objects of
T, there is a well-defined isomorphism

C: ®: F(Xl) — F(@lX,)

A morphism of tensor functors v: (F,c) — (F',¢') is a morphism of functors
commuting with tensor products, i.e., such that the diagrams

1 —2 F(1) FXoY) 22X, F(X)® F(Y)
H l’y(l) lv(X®Y) lv(X)@w(Y)
1 —=— F(1) FIX®Y) -2, F/(X) g F/(Y)

commute.

Tannakian categories. Let ky be a field. A tensor category (T,®) together
with an isomorphism kg — End(1) is said to be pseudo- Tannakian over kg if

A.7.1. T is abelian, and

A.7.2. foreach X in T, there exists an object XV and morphisms ev: X @ XY — 1
and 6: 1 > XV ® X such that

(eveX)o(X®b) =idx, (X'®ev)o(§®XY)=idxv.
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These conditions imply that (T, ®) has an internal Hom and that & is ko-bilinear
and exact in each variable (Deligne 1990, 2.1-2.5): in the terminology of [Saavedra
1972], (T, ®) is a ko-linear, rigid, abelian tensor category ACU such that kg =
End(1); in the terminology of [Deligne and Milne 1982), it is a ko-linear, rigid,
abelian tensor category such that kg = End(1).

Let (T, ®) be a pseudo-Tannakian category over kg, and let A be a kg-algebra.
A fibre functor of T over A is an exact faithful ko-linear tensor functor from
T to the category of finitely generated A-modules. A pseudo-Tannakian category
over kg is said to be Tannakian if it possesses a fibre functor over some nonzero
ko-algebra; when it possesses a fibre functor over kg itself, it is said to be a neutral
Tannakian category.

The dimension of an object X of a pseudo-Tannakian category is the element
evod of ko. A theorem of Deligne shows that, when ko has characteristic zero, a
pseudo-Tannakian category over kg is Tannakian if (and only if) the dimensions of
its objects are nonnegative integers (Deligne 1990, 7.1).

The classification of Tannakian categories in terms of groupoids. A rep-
resentation of a k/ko-groupoid & is a homomorphism ¢: & — &(V) for some
finite-dimensional vector space V over k. The category Rep(S: &) of representa-
tions of ® has a natural tensor structure relative to which it forms a Tannakian
category, and the forgetful functor is a fibre functor over k.

Let (T,®) be a Tannakian category, and let w be a fibre functor of T over
an affine scheme S. Write Aut,‘?o(w) for the functor sending an S xg, S-scheme
(b,a): T — S xs, S to the set of isomorphisms of tensor functors a*w — b*w.
Note that, Aut,‘f’o (w)?, the restriction of Aut,?0 (w) to the diagonal, is the functor
Aut¥(w) sending an S-scheme a: T — S to the set of automorphisms of the tensor
functor a*w.

Theorem A.8. Let (T,®) be a Tannakian category over a field kg, and let w be
a fibre functor of T over a nonempty affine kg-scheme S.

(i) The functor Autg) (w) is represented by an S/Sp-groupoid & which acts
transitively on S.

(ii) The fibre functor w defines an equivalence of tensor categories T —
Rep(S: &).

Conversely, let & be a ko-groupoid acting transitively on a nonempty affine scheme
S, and let w be the forgetful fibre functor of Rep(S: &); then the natural map
6 — Aut,?O (w) is an isomorphism.
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The proof of this theorem occupies most of [Deligne 1990]. The key point in the
proof of (ii) is the following theorem of Barr-Beck in category theory: let A and
B be abelian categories, and let T: A — B be an exact faithful functor having a
right adjoint U; then the functor T' defines an equivalence of A with the category
of pairs (B,-) where B is an object of B and - is a “coaction” of the “comonad”
TU on B (see Deligne, 1990, §4 for a detailed statement).

Corollary A.9. Any two fibre functors of T over S become isomorphic over some
faithfully flat covering of S.

Proof. Let w; and wy be fibre functors of T over S; and S, respectively. There
exists a fibre functor w over T =4 S; II S whose restriction to S; is w;, i = 1, 2.
According to (i) of the theorem, the scheme Aut,?o (w) is faithfully flat over T'x g, T
We want to apply this statement in the case S; = Sy = S. In general

T x5, T = 1<ij<25i X5, 55

and in our case the restriction of Autf’0 (w) to the subscheme

S 2 S xg, 8= xs, 51 CT xs, T

is Tsom (w1, ws), which is therefore faithfully flat over S. Consequently it acquires
a section over some S’ faithfully flat over S, for example, over S’ = Isom§ (w1, ws)).
O

Remark A.10. Let a: T — T’ be a tensor functor of Tannakian categories over
ko. If w and w’ are fibre functors of T and T respectively over S and w = w’ o @,
then « defines a morphism of S/Sp-groupoids Aut} (w') — Aut? (w). When we
drop the condition that w = w’ o, then all we can say is that « defines a morphism
Aut,‘f’0 (Whs — Aut,‘f’0 (w)s for some S’ faithfully flat over S, and that this morphism
is uniquely determined up to isomorphism.

Example A.11. Suppose (T,®) has a fibre functor w over ko, i.e., that it is
neutral. Then the groupoid Aut®(w) is an affine group scheme Gg over kg, and w
defines an equivalence of T with the category of Repy,(Gyo) of finite-dimensional
representations of Gg over kg.

Extension of scalars for Tannakian categories. For any category T, one
can define a category Ind(T) whose objects are the small filtered direct systems of
objects in T, and whose morphisms are given by

Hom((X4), (Yp)) = lim lim Hom(X, Yp).
a g
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Assume T is an abelian category whose objects are Noetherian (for example, a
Tannakian category). Then T is a full subcategory of Ind(T), limits of small
filtered direct systems in Ind(T) exist and are exact, and every object of Ind(T) is
the limit of such a system of objects of T. Conversely, these conditions determine
Ind(T) uniquely up to a unique equivalence of categories (Deligne 1989, 4.2.2).

Let (T,®) be a Tannakian category over kg, and let w be a fibre functor of T
over a field k. Consider a diagram of fields

k —— K

[

, ko — kb,

Let X be an object of Ind(T) endowed with a homomorphism i: kf — Endg, (X)
of ko-algebras. We refer to the pair (X, i) as a kj-object in Ind(T). A subobject
Y C X generates (X,t) as a k{-object if it is not contained in any proper kj-
object. Define T ®x, kj to be the category whose objects are the kf-objects of
Ind(T) that are generated as kj-objects by a subobject in T.

Proposition A.12. Under the above assumptions, the category T ®g, k{, is a
Tannakian category over kf), the fibre functor w extends to a fibre functor w' of
T Q, ko over k', and the k' [k{-groupoid Auifff6 (w') is the pull-back of the groupoid
k/ko-groupoid Aut,?o (w).

Proof. After (A.8), we may suppose that T = Rep(S: &), where S = Speck,
and that w is the forgetful functor. Then the statement follows from (Deligne 1989,
4.6ii). O
Example A.13. Take kj = k' = k. The proposition then shows that T ®, k is a

neutral Tannakian category over k, that w extends to a fibre functor w’ of T ®y, k,
and that the affine group scheme attached to (T ®k, k,w’) is BA.

Gerbs. Recall that Affg, is the category of affine schemes over Sy. A fibred
category over Affs, is a functor p: F — Affg, such that every morphism «: T —
S in Affs, defines an “inverse image” functor o*: F(S) — F(T') with certain
natural properties (see Deligne and Milne 1982, p221). Here F(S) is the category
p~1(9); it is called the fibre over S.

A fibred category is a pre-stack if for every pair of objects a,b of F(S), the
functor sending an affine S-scheme u: T — S to Hom(u*a,u*b) is a sheaf for the
faithfully flat topology on S (see Waterhouse 1979, 15.6, for the notion of a sheaf
for the faithfully flat (= fpqc) topology). It is a stack if, for every faithfully flat
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morphism 77 — T in Affg,, the natural functor sending an object of F (T) to an
object of F(T") with a descent datum is an equivalence of categories (i.e., descent
is effective on objects).

A stack is a gerb if it satisfies the following conditions:

A.14.1. it is nonempty;
A.14.2. the fibres are groupoids in sets;

A.14.3. any two objects are locally isomorphic.

Let G be a gerb over So, and let e € G(S) for some nonempty S. Write Aut(e) for
the functor whose value on an affine S-scheme c: T'— S is the set of automorphisms
of c¢*e regarded as an object of the category G(T'). The gerb is said to be affine if
this functor is representable by an affine group scheme over S (the group scheme
then has the structure of a band over Sp).

Groupoids and gerbs. Let & be an S/Sy-groupoid. By definition, for any Sp-
scheme T, the quadruple (S(T),®(T),(t,s),0) is a groupoid in sets. For varying
T, these categories form a fibred category G°(S: ®) — S. It is a pre-stack. Let
G(S: &) be the stack associated with G° for the faithfully flat topology. It contains
G as a full subcategory, and it is characterized by having the property that any
object of G is locally in G°.

Proposition A.15. Let & be an Sp-groupoid acting on a nonempty scheme S.
The stack G(S: &) is a gerb if and only if & acts transitively on S.

Proof. This is almost obvious—see [Deligne 1990, 3.3.] O

Let G = G(S: &). Then G(S) has a distinguished object, namely, the identity
morphism of S. Let & and &’ be Sy-groupoids acting transitively on S. A mor-
phism a: & — &’ defines a morphism of fibred categories G°(S: &) — G%(S: &),
and hence a morphism of gerbs G(S: ) — G(S: &), carrying the distinguished
object of G(S: &)(S) to that of G(S: &')(S).

Conversely, let G be an affine gerb over Affg,, and choose an object e of G(S)
for some nonempty affine scheme S over Sy. For any S xg, S-scheme (b,a): T —
S Xs, S, let Auts,(e)(T) be the set of isomorphisms a*e — b*e (in the category
G(T)). This functor is represented by an So-groupoid & acting transitively on S,
which we call the groupoid of Sy-automorphisms of e.

These operations are inverse: if ® is an Sp-groupoid acting transitively on a
nonempty affine scheme S over Sy, then G(S: ®) is an affine gerb with distinguished
element e = ids in G(S) and Auts,(e) = &; if G is an affine gerb over Sy and e
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is an object of G(S), then Autg,(e) is represented by an Sp-groupoid & acting
transitively on S, and there is a canonical fully faithful functor G°(S: 8) — ¢
which induces an equivalence of gerbs G(S': ®) — G. (See Deligne 1990, 3.4.)

The classification of groupoids. For a band G, the cohomology set H?(Ss, Q)
is defined to be the set of G-equivalence classes of gerbs over Sy bound by G. We
define the cohomology class of an S/ So-groupoid & to be the cohomology class of
the associated gerb G(S: ). When & is commutative, this definition can be made
more explicit (see below).

Proposition A.16. Let ® and ®' be commutative S/So-groupoids, and let
0: B2 o &2 he g homomorphism of commutative group schemes over So; then
¢ extends to a morphism of gerbs if and only if it maps the cohomology class of ®
to that of &',

Proof.  After replacing & with ¢,®, we can assume that ® 1s the identity map, in
which case the proposition is obvious. O

Morphisms of groupoids. Let B and & be transitive S/So-groupoids, and
let ¢ and 4 be morphisms P — &. For any S-scheme T, o(T) and (T) are
homomorphisms of groupoids in sets. Define I som(yp, 1) to be the subscheme of G
such that, for any S-scheme T', Isom(p,4)(T) is the set of isomorphisms ¢(T) —
P(T). A section of B over S x g, S defines a descent datum on Isom(yp,v) which is
independent of the choice of the section. Therefore I som(p, 1) is defined over k.
Let Aut(p) = Isom(p, ¢). Then Aut(yp) is a group scheme over ko, and Isom(yp,1))
is either empty or is a right Aut(p)-torsor. If S = Spec k3!, then

Isom(p, ) (ko) = {g € G(k§") | adg o p = 9}.
Example A.17. As we noted in (A.6), there is a canonical morphism ¢: &y —
&, from the trivial gerb to the neutral gerb defined by a group scheme Gy over
ko. For this morphism
Aut(go) = Go.

Proposition A.18. Let go: B — & be a homomorphism of k3! /kqg-groupoids,
and assume that P is commutative and that the kernels of B and & are of finite
type. The Sg-scheme Isom(po,¢) is nonempty (and hence an Aut(po)-torsor) if
and only 8 is conjugate to @™ by an element of G(k3!). The map sending ¢
to the cohomology class of the torsor Isom(ypy, ¢) defines a bijection from the set
of isomorphism classes of homomorphisms - B — & such that o> and p§ are
conjugate to H'(S/Sy, Aut(ipo)).

Proof. Omitted. d
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The extension defined by a groupoid. Suppose S is Galois over Sp. By
definition, this means that there is a profinite group I' acting on S over Sp such
that the map

SxT —8xs,8, (57 (557

is an isomorphism of schemes. Here T' is to be interpreted as a finite or pro-finite
(hence affine) scheme over S.

Now assume that S = Speck with k = k&', and that there is a section of &
over S xg, S. We can use the above isomorphism to identify (S xs, S)(S) with
T = Gal(k/ko), and so the map & — Sx 5, S defines a surjection &(k) — Gal(k/ko).
There is a unique way of putting a group structure on &(k) so that

0 —— G(k) —— &(k) —— Gal(k/ko) —— 0

is an exact sequence of groups (here G = ®2). Thus a k/ko-groupoid can be
thought of as an extension as above with additional structure. This is the approach
adopted in [Langlands and Rapoport 1987).

In the case that G is commutative, the cohomology class of & is the class
attached in the usual way to the above exact sequence, i.e., if for a suitable section
s to the map (k) — T, we write s(p) - s(1) = dp75(p7), then (p,7) = dpr is a
2-cocycle representing the class of ® in H? (ko, Go).

Remark A.19. Let B be a commutative kg /ko-groupoid with kernel Fy. Let
@o: Py — Go be a homomorphism of group schemes over ko, and let Z,, be the
centralizer of po(Po) in Go. Assume o extends to a homomorphism ¢: P — Bg,,
and let I, = Aut(yp). Then I, is an inner form of Z,, whose cohomology class can
be described as follows. Choose a suitable section s, as above, and let (d,+) be the
corresponding 2-cocycle. When we write ¢(s(p)) = (¢, p), we obtain a l-cochain
(c,) splitting the cocycle (¢(dp,r)):

¢p - per = @(dpr) * Cor-
For p € Py(k3") we have
po0(p) = wolpp) = wo(s(p) - p-3(0)™") = (cpr ) P0(P) - (cpyP) ™" = o= pip0(p) ¢,
and 50 ¢, € Zy,(k3"). The formula displayed above shows that the image of (c,)

in Z,,/po(P) is a cocycle. Its class in H'(ko, Z,,/¢0(P)) depends only on the
isomorphism class of ¢, and it is the cohomology class of I,.
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The classification of Tannakian categories in terms of gerbs. Let T be a
Tannakian category over ko. For any affine scheme T over ko, let FI1B(T)(T) be
the category of fibre functors over T. Then FiB(T) is in a natural way a fibred
category over Affy,.

Theorem A.20. Let T be a Tannakian category over ko ; then the fibred category
F1B(T) is a gerb over Sy, and the obvious tensor functor

T — Rep(F1B(T))

is an equivalence of Tannakian categories. If T’ is a second Tannakian category,
then the functor

Hom(T, T') - Hom(F1B(T), F1B(T"))
is an equivalence of categories.

Proof. The proof of this in (Saavedra 1972, III) becomes valid once (A.9) is ac-
quired. ‘ O

Notes. For a survey of groupoids in sets, see [Brown 1987]. There is no good
detailed account of groupoids in schemes, but [Deligne 1989] and [Deligne 1990]
contain summaries. The theory of Tannakian categories is scattered among [Saave-
dra 1972], [Deligne and Milne 1982}, and [Deligne 1990].

APPENDIX B. THE COHOMOLOGY OF REDUCTIVE GROUPS

In this section we review some results in the Galois cohomology of reductive
groups. Throughout, k is a field of characteristic zero, and k* is an algebraic
closure of k. Reductive groups are assumed to be connected.

Inner forms. Let G be an algebraic group over k. An inner automorphism
of G is an automorphism defined by an element of G*4(k). An inner form of G
is a pair (I,a) consisting of an algebraic group I over k and a G(k*)-conjugacy
class of isomorphisms a: Gga — I such that a=! o 7a is an inner automorphism
of Gpa for all 7 € Gal(k?/k). Two inner forms (I,a) and (I’,a) are said to be
isomorphic if there is an isomorphism of algebraic groups ¢: I — I’ (over k) such
that

ac€Ea=poaca

Note that ¢ is then uniquely determined up to an inner automorphism of G over
k. An inner form is said to be trévial if it is isomorphic to (G,id). When (I, @)
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is an inner form of G and a € a, we often loosely refer to a: Giat — I as inner
twisting of G, and (even more loosely) we write a: G — 1.

If (I,a) is an inner form of G and a € «, then ¢, = a™!

oTa is a l-cocycle
for G*4 whose cohomology class does not depend on the choice of a in «. In this
way the set of isomorphism classes of inner forms of G becomes identified with

H(k, G4,

The algebraic fundamental group. Let G be a reductive group over a field k.
Let G*¢ be the simply connected covering group of G4°™, and let p: G*° — G be
the composite

G5¢ Gder NYel

Let T be a maximal torus in Gyai, and let T5¢ = p~1(T); it is a maximal torus in

2at- The restriction of p is a homomorphism T°¢ — T with finite kernel, and we

define
m(G, T) = X (T)/ ps X (T*).
It is a finitely generated abelian group.
If T is a second maximal torus in Gya, then there exists a g € G(k*') such that

T =gTg~!.

Lemma B.1. The map ni(G,T) — m1(G,T") induced by ad g is independent of
the choice of g.

Proof. See [Borovoi 1989/90, 1.2:] O

We let m1(G) = 71(G,T) for any maximal torus T in Gya, and we call it the
algebraic fundamental group of G. According to the lemma, it is well-defined
up to a canonical isomorphism. There is a natural action of I' =4 Gal(k®/k) on
71(G): for example, if we choose T to be a maximal torus in G (rather than Gya),
then the action is the natural action of ' on X, (T)/pX.(T5).

Properties B.2.

(a) The algebraic fundamental group is an exact functor from the category of
reductive groups over k to the category of Gal(k* /k)-modules.

(b) For a torus T over k, m(T) = X.(T).

(c) For a semisimple group G, m(G) = (Kerp) ® Z(—1). Here Z(1) =4f
}i_rll,un(kal) and Z(-1) is its dual.

(d) If G is simply connected, then 7,(G) = m,(G?*) = X,(G?"); in general

there is an exact sequence

1— Kerp®f2(—1) — m(G) - X*(Gab) -1



Points on a Shimura variety 231

(e) An inner twisting a: Gja — Gla of G induces an isomorphism m{(G) —
m1(G).

(f) Let GV be the dual group of G; then there is a canonical isomorphism
T1(G) = X*(Z(G")) (see B.28 below).

(g) When k = C, the topological fundamental group of G(C) is equal to 7, (G)
(the isomorphism implicit in this statement depends on a choice of Vv-1).

(h) The étale fundamental group 7$*(G) of G is equal to 7, (G) ® 2(1)

Example B.3. Let G be the quasi-split unitary group attached to a quadratic

imaginary extension E of a totally real field F as, for example, in §6 of [Gordon
1991]. Then G is simply connected, and G?* = (G5 0+ Therefore

m(G) = X.(Gn) g = Z[Hom(E, Q)]

The functor G +— A(G). If M is a I'-module, we define M" and Mr respectively
to be the largest submodule of M and the largest quotient module on which the
action of T is trivial. For a reductive group G over k, define

AG) =T (Prors, T = CGal(k*/k).

Then G — A(G) is a functor from the category of reductive groups over k to the
category of finite abelian groups.

Recall [Serre 1962, VIIL.1] that, for a module M over a finite group I, the Tate

cohomology group Hy'(T', M) is defined to be the quotient of the kernel of the
norm map

T ) pTe: M > M
by IrM where Ir is the ideal in Z[I'] generated by the elements 7 — 1, 7 € T.

Proposition B.4. Let k be a field having extensions of arbitrarily large degrees.
For any sufficiently large finite Galois extension k' of k,

A(G) = Hy ' (Gal(k' /k), m1(G)).

Proof.  Let k' be a finite Galois extension of k splitting G, and let I" = Gal(k'/k).
Then 7;(G)r = m(G)r = m(G)/Ir71(G), and so there is an obvious inclusion

H-H (Y, m1(G)) — 7 (G)r.
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Because m1(G) is finitely generated, Hy'(I",71(G)) is finite (ibid. p138), and so
the image of the map is contained in m1(G)rtors- Conversely, let z be a torsion
element of 71 (G)r, and write N for the norm map

m(G) - 1(G), T ) 7T

For some m, mz € I (G) C Ker(N), and so m - Nz = 0. After replacing k' by
a suitable larger extension, we will have z € Ker(N). O

Remark B.5.

(a) In terms of the dual group GV, A(G) is the dual of the finite group
70(Z(GV)F). Indeed,

(mo(Z(GV)") ™ = (X*(Z(GY) )tors = (X*(Z(G¥))r tors-
(b) If G is the unitary group in (B.3), then
A(G) = HL(K/k, X.(T)) = 0.
Crossed modules. Let T be either a discrete or profinite group. By a I'-module
we mean a group N (not necessarily commutative) together with a continuous action
I'x N— N

of T on N. Since N is endowed with the discrete topology, the continuity condition
is vacuous if T' is discrete, and it means that

N =UN"" (union over open subgroups I" of T')

when I is profinite.

Definition B.6. A crossed module is a homomorphism of groups
M2N
together with a left action of N on M (denoted by (n,m) — "m) such that:

(B.6.1) for m,m’ € M, *™m/ = (adm)(m');
(B.6.2) for m € M and n € N, a("m) = (adn)a(m).
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A T-action on a crossed module (M — N) is a continuous action of I' on M and
N such that the maps
M3 N, N — Aut(M)

commute with the action of T".

The crossed module a: M — N is to be regarded as a very short complex, with
M in the -1 position and N in the 0 position. Henceforth, by a crossed module, we
shall always mean a crossed module with T'-action.
Example B.7.

(a) For any I'-module N, there is a crossed module 1 — N. For any abelian
I'-module M, there is a crossed module M — 1. We usually write 1 for the
crossed module 1 — 1.

(b) If M is a normal subgroup of the I'-module N that is stable under the

action of T", then the inclusion map M — N becomes a crossed module
with the action "m = nmn~1.

(c) Any surjective homomorphism M — N of I'-modules with central kernel
becomes a crossed module with the natural action of N on M.

(d) If M and N are commutative, then any homomorphism M — N of I-
modules can be regarded as a crossed module with N acting trivially on M.
A crossed module of this form is said to be commutative.

(e) For any I'-module M, m + adm: M — Aut(M) is a crossed module.
(f) For any reductive group G over k, the map p: G*¢ — G defines a crossed
module G*°(k*) — G(k*) over T' = Gal(k® /k).
Lemma B.8. Let a: M — N be a crossed module.
(a) The group Ker(a) is central in M, and is invariant under the action of N.

(b) The group Im(a) is normal in N .
Proof. Both statements follow directly from the definition of crossed module. O
Definition B.9. A homomorphism of crossed modules
e: (My =5 Np) — (My 25 Ny)

is a pair of homomorphisms of I'-modules (e_1: M; — M, €9: Ny — N») such
that .
M, —5 M,

all laz

N1—€—°>N2
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commutes and
e_1("m) = E"(")es_l(m) foralln € N;, m¢c M.

A homomorphism ¢ of crossed modules is said to be a quasi-isomorphism if the
homomorphisms

H™'(¢): Ker(oy) — Ker(ayp); H%(e): Coker(a;) — Coker(ay)

are isomorphisms.

Example B.10.

(a) If « is injective, then the homomorphism of crossed modules
(M = N) — (1= N/a(M))

is a quasi-isomorphism.

(b) If « is surjective, then the homomorphism of crossed modules
(Keraw — 1) - (M — N)

is a quasi-isomorphism.

(¢) For any maximal torus T in the reductive group G,
(T*°(k™) & T(k™) — (G>(k) 5 G(k™))
is a quasi-isomorphism.
Definition B.11. A sequence of homomorphisms of crossed modules
1— (M; = Ny) 5 (My — Ny) =5 (My — Na) — 1
is said to be exact if the sequences
1M - M, > Ms—1, 1—- N —Ny— N3—1

are exact.

Example B.12. For any crossed module (M 5 N) there is an exact sequence

15(15N)-(M->N)y—»(M-—>1)—>1.
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The cohomology of crossed modules. It is possible to define cohomology sets
HY(T,M — N) for i = —1,0,1.
Definition B.13.

(a) Set
H™'(T,M — N) = Ker(a)";

it is an abelian group.

(b) Write Maps(T', M) for the set of maps ¢: I' — M, and set
C° = Maps(T', M) x N

2" ={(p.,n) € C”| p(o7) = ¢(0) - "(7), “n=a(p(c)™")-n, 0,7 €T}.

The set C° has a group structure

(p1,11) - (p2,n2) = (M2 - p1,n1712)
for which Z° is a subgroup. The map
viM—2Z°% mw(pa(m), olc)=m-"m!
is a homomorphism whose image is a normal subgroup of Z°. Define
H°(T, M — N) = Z°/u(M).

It is a group.

(¢) The set Z! of 1-cocycles is defined to be the subset of
C! =4 Maps(T x T', M) x Maps(T', N)
of pairs (k, 1) such that, for o, 7,v € T,
a(h(o,7)) - Pp(oT) = (o) - “4(7)
Y p(r,v) - ho, Tv) = h(o,7) - h(oT,v).
There is a natural right action of C° on Z!, namely, for (a,n) € C°,
(h,9) * (a,n) = (h',9")
where
V' (0) =n"" - ala(0)) - 9(0) - Tm
W(o,7)="" (a(a) D91 - h(o,7) - a(m)—l) :

We define
HY(T,M — N) = Z'/c°.

It is a set with a distinguished neutral element, namely, that represented
by the trivial cocycle (1,1).
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Properties B.14.
(a) H°(1 — N) = HY(T,N); H°(M — 1) = H\(T, M).
(b) H!(1 — N) = HYT,N); H{(M — 1) = H*T,M) (which is defined,
because M is commutative).

(c) If M — N is a commutative crossed module, then H!(M — N) is the usual
hypercohomology of the complex M — N.

(d) [Borovoi 1991, 2.16.] A short exact sequence of crossed modules
1o (My = Ny) 5 (My — Ny) <5 (My — Ny) — 1
gives rise to an exact sequence
1->H YT, M - N) - H Y, My > Ny) — -+ — HY{(T, M3 — Na).

For example, from (B.12) we see that, for any crossed module (M — N),
there is an exact sequence

.= HT,M) - H(T,N) - HT,M - N) - ....

(e) (Ibid. 2.22.) Suppose in the above short exact sequence that (M; — Np) is
central in (My — N3), i.e., M; is central in Ms, N is central in Ny, and
Ns acts trivially on Mj. Then the sequence extends to an exact sequence:

o HY(My — Np) — H' (Ms — N3) — H2(M; — Ny).

(f) (Ibid. 3.3.) The maps on cohomology induced by a quasi-isomorphism of
crossed modules are bijections.

Example B.15. Let G be a reductive group over k. The quasi-isomorphism
in (B.10c) defines an isomorphism H(k, T — T) — H!(k,G%¢ — G) for each
i. In particular, we see that these sets are commutative groups. The Tate-
Nakayama isomorphisms sometimes allow us to compute H*(k,T°¢ — T) in terms
of H*(k, X.(T%°) — X.(T)) = H*(k,71(@)).

The map G(k) — m(G)'. Let k be a finite extension of Q,, and let ' =
Gal(k"™/k). For any unramified torus T over k, there is a surjective homomorphism
T(k) — X (D) = (T)F (B.15.1)

obtained by tensoring the normalized valuation ord: (k"*)* — Z with X, (T) and
taking invariants under I'. Now consider the two functors G — G(k) and G —
71(G)' from the category of unramified reductive groups over k to the category of
groups.
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Proposition B.16. There exists a unique extension of (B.15.1) to a homomor-
phism of functors

Aa: G(k) - m(G)F.

For all G, the homomorphism A¢ is surjective, and every hyperspecial subgroup of
G(k) is contained in the kernel of \¢.

Proof. Choose a Borel subgroup B of G defined over k, and let T be an unramified
maximal torus of G contained in B. Consider first the diagram

G<(k) —  Gk) —  H%KG¥—G)

HG,T) — HO(k, T — T) —  H(k,T*)

! ! l

HO(k, X.(T)) — H(k, X.(T*) — X,(T)) — H'(k, X,(T"%)

HO(k,m (@) = 7 (G)T

in which the vertical arrows are induced by ord. Because G*° is simply connected,
the set of fundamental weights is a basis for X*(7%°), and since G, B, T are
defined over &, I' preserves the fundamental weights. It follows that T%¢ is a
product of tori of the form (G,,) F/x for certain finite extensions F of k, and so the
two cohomology groups at right are zero. The diagram now provides a surjective
homomorphism A¢: G(k) — m1(G)" whose kernel contains G*°(k) and Ker(Ar).
Since a hyperspecial group K can be written

K = p(K*) - (T(k) N K)

with K¢ C G*(k) [Kottwitz 1984b, 3.34], it is contained in the kernel of A\¢. O

Fundamental tori. Let G be a reductive group over a field k of characteristic
zero. A fundamental torus T C G is a maximal torus of minimal k-rank. The
maps

TwT* T wpT) Z(T)

determine a one-to-one correspondence between the maximal tori in G and those
in G®*¢. Clearly, fundamental tori correspond to fundamental tori under this corre-
spondernce.
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Proposition B.17. Every semisimple group over a non-archimedean local field
contains an anisotropic torus.

Proof. See [Kneser 1965 , II, p271]. O

Lemma B.18. Let T be a fundamental torus of a simply connected semisimple
group G over a local field k; then H*(k,T) = 0.

Proof. 1If k is non-archimedean, then T is anisotropic, and the Tate-Nakayama
isomorphism

HY.(Gal(k'/k), X..(T)) — H*(Gal(k'/k, T(K")),
which exists for every finite Galois extension &’ of k (see B.21 below), shows that
H%*(k,T) = 0. If k = R, then T is isomorphic to a product of compact torus with
copies of (G,,)c/r (see, for example, [Kottwitz 1986, 10.4], and so the result is
obvious. 0

Lemma B.19. Let T be a fundamental torus of a reductive group G over R;
then the map H'(R,T) — H'(R,G) is surjective.
Proof.  See [Kottwitz 1986, 10.1}; also [Langlands and Rapoport 1987, 5.14]. O
Proposition B.20. Ifkis a local field, then there is an exact sequence (of abelian
groups)

HY (k,G*) - H'(k,G) — H'(k,G** - G) — 0.
Proof. Choose T to be fundamental in G, and consider the commutative diagram:

HY(G*) —— HYG) —— HY(G* - G)

HYT) —— HY{T* —»T) — HT*).
From (B.18) we know that H2(T*°) = 0, and this implies that H'(G) — H (G —
G) is surjective. a
The group A(G) in the local case. We first recall the local version of the

Tate-Nakayama isomorphism.

Proposition B.21. Let k' be a finite Galois extension of a local field k, and let
I = Gal(k'/k). For any finitely generated torsion-free I'-module M, cup-product
with the fundamental class in H?(I', k'*) defines an isomorphism

HL(I', M) — HIF*(T', M @ k')
for all integers r.

Proof.  See [Serre 1962, 1X.8]. O
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Proposition B.22. Let k be a local field of characteristic zero. For any reductive
group G, there is a canonical homomorphism

ag: H'(k,G) — A(G),

which is functorial in G. If k is nonarchimedean, then ag is an isomorphism; if
k =R, then there is an exact sequence

HYR,G*) — HY(R,G) — A(G) — m(G)
in which the last map is induced by 1+ 1: 71 (G) () = 71(G).

Proof. Assume first that k is nonarchimedean. From (B.4) we know that for all
sufficiently large finite Galois extensions k' of k,

A(G) = Hy (Gal(K' /k), 71(G)) = Hy(Gal(K' /k), X.(T™) — X.(T))

for any maximal torus T in G. It follows from (B.21) that this last group is
canonically isomorphic to H!(Gal(k'/k), T*¢(k") — T(k')). Since A(G) does not
depend on k', when we pass to inverse limit, we obtain the first of the following
isomorphisms ~
AGQ) S H (K, T* - T) = H\(k, G - G).

The second was noted in (B.15). From (B.20) and the fact that H'(k, G%*) = 0, we
know that '
H'(k,G) - H'(k,G** — G)

is an isomorphism, and this completes the proof in the nonarchimedean case.

The proof in the archimedean case is similar.

The group A(G) in the global case. Let k be a number field, and let &’ be a
finite Galois extension of k£ with Galois group I"”. In this case, the Tate-Nakayama
isomorphisms compare the cohomology of the sequence

1 -k* >y -5CL—1
with that of the simpler sequence
0—X—->Y—-7Z—0

where Y is the free abelian group generated by the primes of k' and X is the kernel
of the map

Yonu Yy on,: Y - Z.

An element 7 of the group I acts on Y according to the rule:

T(Z Nyv) = va(ﬂ)) = anluu
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Theorem B.23. For any finitely generated torsion-free I'-module, there is a com-
mutative diagram

-— HiT,X®M) — H(I'Y®M) — H.T,ZM) — .-

! ! !

- — HiP(T,L* @ M) — H{P*(D, 19 M) — HP(T,CoM) — -

Proof. See [Tate 1966, p717]. d

Theorem B.24. For any reductive group G over a number field k, there exists
a canonical exact sequence

H'(k,G) — @,H' (ky, G) — A(G),

which is functorial in G.

Proof (sketch). Consider the commutative diagram

Hl(k,GSC) _O_nti) @vHI(kv;GSC)

! !

H'(k,G) — &, H(k,, Q)
H'(k,G*° - G) —— @,H!(k,,G* — G).
The cokernel of the middle horizontal arrow maps injectively into the cokernel of

the bottom arrow. Using (B.15), we can replace the G’s in the bottom row with
T’s, and then (B.23) allows us to compute the cokernel. O

The map H'(k,,G) — A(G) in the theorem is the composite of the map
ag: H'(k,,G) — A(Gy,) with the obvious map A(Gy,) — A(G).

The o-conjugacy classes. Let B be the field of fractions of the Witt vectors
over F. For a reductive group G over Q,, we write B(G) for the set of o-conjugacy
classes in G(B), i.e., B(G) = G(B)/~, where g ~ ¢’ if g’ =t-g-ot™! for some
t € G(B).

Proposition B.25. Regard X, and B as functors from the category of tori over

Qp to the category of groups. There is a unique morphism of functors §: X, — B
such that (g, is the map
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Xi(Gm) = B(Gm), p+ [ul™)].
For all T, Op induces an isomorphism

XA(T)r — B(T).

Proof. This is proved in [Kottwitz 1985, 3.5]. Here we recall only the proof of the
uniqueness. First consider the torus T' =g (G /Qp for some finite extension L
of Qp. The norm map L™ — Q' defines a homomorphism Nm: T — G,,, and if
B(T) exists, there will be a commutative diagram:

x.1) 22, B

JVNm le
X.(Gn) ZE7, B(G,,).
The right hand map Nm is an isomorphism, and so the diagram shows that 3(T) =
Nm™! 0f(G,,) o Nm.
Now consider an arbitrary torus T, and let y € X.(T). Choose a field L C le
such that p is defined over L. There is a unique element po € Xi((Gm)r/g,) such

that

1 if 7 is the given embedding of L into Qf,',

< T, U >=
{ 0 otherwise.

On applying Resy,q, to p: G, — T and composing with the norm map
Resp,q, TL — T, we obtain a homomorphism a: (Gn)r/g, — T such that
ao o = p. Now the commutative diagram

X (Gm)rs0,) —2— B(Gm)1/0,)

| %@ lm&(a)

x.(T L B
determines the image of p under 8(T).

Remark B.26.

(a) Our normalization of the maps B(T) is the opposite of that of [Kottwitz
1985]—he specifies that 3(G,,) sends u to [u(p)]. Our convention seems to
be forced on us by Deligne’s convention that u(z) acts on H™™ as 27 ™,
not 2™.
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(b) The map A(T) can be described as follows: choose a finite extension L of
B splitting T'; the image of a cocharacter p of T is the o-conjugacy class of
Nm p(r), where 7 is a uniformizing parameter for L and Nm is the norm
map T(L) — T(B). In particular, when T is unramified, S(T) is simply
the map u +— [u(p)™!]. (See [Kottwitz 1985, 3.5).
We can regard f7! as a functorial isomorphism B(T) — X.(T)r = m(T)r.
Both B and 71(-)r are functors from the category of reductive groups over Q, to
the category of groups.

Proposition B.27. There is a unique functorial map
B(G) - m1(G)r
extending the map ™" on tori.

Proof. Observe that B(G) = HY(T',G(B)) where T is the free abelian (discrete)
group generated by o. The extension from tori to reductive groups can be made as
usual using the quasi-isomorphism (B.10c).

The dual group. We review part of the theory of the dual group; for more
details, see [Borel 1979] or [Kottwitz 1984a]. Throughout this subsection, k is a
field of characteristic zero, T' = Gal(k® /k), and G is an arbitrary reductive group
over k.

Let G be a connected reductive group over k*. The choice of a pair B O T
with B a Borel subgroup of G and T a maximal torus, determines a based root
datum ¥o(G,B,T) = (X*,A, X,,AY) in which X* = X*(T), X, = X.(T), and
A (resp. AV) is the set of simple B-positive roots (resp. coroots) of T. For any
other pair B’ D T”, there is an inner automorphism v of G such that v(T) = T"
and v(B) = B’. The isomorphism ¥o(G, B,T) — ¥o(G, B’,T') defined by v is
independent of the choice of v. We can therefore drop B and T from the notation.
The tnverse of ¥y(G) is defined to be

To(G)Y = (Xu, AV, X*, A).

A splitting of G is a triple (B, T, {X4}acav) with X, a nonzero element of the
root space Lie (G)q.

Now assume that G is defined over k. We write ¥o(G) for Uo(Gpa). In this
case, ' acts on ¥o(G). A connected reductive group GV over C together with
an action of I' will be called a dual group® for G if ¥o(GV) is I-isomorphic to

9The usual notation is G but™is better reserved for completions. Strictly, GV should be called
the identity component of the L-group, and it should be denoted TGO,
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Po(G)Y and T preserves some splitting of G¥. For example, the dual group of
a torus T is the torus TV over C such that X,(TV) = X*(T) with T acting on
TV(C) = X*(T) ® C* through its action on X*(T).

We shall mainly be concerned with the centre of the dual group. The following
description of it will be useful: let D = G and let C = 73/(G9°") (the centre of the
simply connected covering group of G9T); then the identity component of Z (GY)
is D, and the quotient of Z(GY) by DV is the dual C92! of C. Therefore, there
is an exact sequence

1—- DY - Z(GY) - ¢! 51,
In particular, Z(G") is connected if and only if G4°" is simply connected, in which
case Z(GY) = DV.

A homomorphism v: G — H of connected reductive groups is said to be normal
if its image is a normal subgroup of H. Once splittings have been chosen for G and
H, 7y determines a homomorphism «" : HY — GV. A change in the choice of the
splittings does not affect v|Z(H"), and we have a contravariant functor G +— Z(GV)
from the category of connected reductive groups over k and normal homomorphisms
to the category of diagonalizable groups over C with an action of I'. Furthermore,
an exact sequence

1-Gy -Gy -Gy -1

gives rise to an exact sequence
1 - 2(G3) = 2(GY) - Z(G3) — L.
Relation of 7;(G) to the dual group.

Proposition B.28. For any reductive group G, m(G) and X*(Z(GV)) are
canonically isomorphic.

Proof. Let T be a maximal torus of G. Then there is a maximal torus TV c GV
such that X*(TV) = X,(T), and R(GY,TV) = RY(G,T) where R and RY denote
the systems of roots and coroots respectively. Moreover
Z(GY) = ﬂ Ker(a": TV — Gpc).
avER(GY,TV)
Hence
X*(Z(GY)) =X*(TV)/ < R(GY,TY) >= X, (T)/ < R" > .
All the coroots oY € RY C X,(T) come from X,(T°°), and the subset RV of
0« X (T5°) generates it. Therefore

X (2(G)) = Xu(T)/ e Xu(T*) = m(G).
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Notes. The definitions and results in B.1 through B.15 are taken from [(Borovoi
1989/90] and {Borovoi 1991]. Propositions B.16, B.22, B.24, B.27 are results of
Kottwitz, [Kottwitz 1984b, 3.3; 1986, 1.2; 1986, 2.5; 1990, 6.1] respectively), except
that, since he used the dual group in his proofs, Kottwitz only showed that the
maps are functorial with respect to normal homomorphisms. The proofs given here
are either in [Borovoi 1991] or are easy given Borovoi’s methods and Kottwitz’s
original proofs. Proposition B.28 is from [Borovoi 1989/90].

APPENDIX C: RELATION TO THE TRACE ON THE
INTERSECTION COHOMOLOGY GROUPS

In this appendix, I explain how the problem of computing the trace of a
(Frobenius automorphism) x (Hecke operator)

on the intersection cohomology groups of a Shimura variety relates to the problem of
describing the set of points of the Shimura variety with coordinates in the algebraic
closure of a finite field, together with the actions of the Frobenius automorphism
and the Hecke operators.

The Lefschetz trace formula. Let S be a smooth algebraic variety over an
algebraically closed field k, and let V be a local system of Q-vector spaces on Seg,
some £ # char k. A correspondence on (S,V) is a pair of mappings

serls
and a homomorphism ~: a*V — G*V. When § is finite, there is a canonical trace
map f.0*F — F, and consequently maps
HY(S,V) — H{T, o*V) 2 H{(T, p*V) 22 Hi(S, V),
whose composite we again write v. We can form the trace
Te(y[H*(S,V)) =4 D (=1)' TE(2|H'(S,V)).

Under suitable hypotheses, there will be a Lefschetz trace formula expressing this
as a sum of local terms over the fixed points of the correspondence. A fized point
of the correspondence is a closed point ¢ of T such that a(t) = 8(1):

st LN 8.
For such a point t, 4 defines a map
YV, = (@*V); =5 (B*V); = Vs,
on the stalks of V.
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Theorem C.1 (Lefschetz trace formula). Assume that S is complete, that «
is proper, that the set of fixed points of the correspondence is finite, and that each
fixed point is of multiplicity one. Then

Tr(y[H*(S,V)) = > Tr(n|Vsw),

where the sum is over the fixed points t of the correspondence.
Proof. See [Grothendieck et al 1977, I11.4.12], and [Grothendieck 1977, 3.7].

Exercise C.2. To give a sheaf on a finite set endowed with the discrete topology
is the same as to give a family of vector spaces indexed by the set. Prove the
Lefschetz trace formula in the case that S and T are finite sets.

Zeta functions of complete varieties. Let S be a complete smooth variety
over Fy,. The zeta function of S can be defined by either of the following two
formulas:

Z(S,T) = exp (Z Vn(Sj : T—:) (C.2.1)

n>0

where v, (S) is the number of points on S with coordinates in Fn, or

)'i+1

2(5,T) = [[ det(1 — FT|H(S © F, Q)" (C.2.2)

The equivalence of the two definitions follows from the Lefschetz trace formula
applied to the correspondence F™,

s g4, S, can: F™* Qg — Qq,
which gives that

Te(F™H*(S,Q0) = Y Tr(id Q) = vn(S).

Both definitions are useful.

More generally, let V be a local system of Qg-vector spaces on S. Again there is
a canonical morphism F*V — V, and Grothendieck’s Lefschetz trace formula shows
that the following two definitions of the zeta function of V on S are equivalent:

Tn
ZEV, T =exp [ > Y Te(FEV)-— |,
n SES(Fqn) n
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or

Z(S,V,T) =[] det(@ - FT|H (S & F, V)~V

(See [Milne 1980, VI.13].)

Now consider a complete smooth algebraic variety S over a number field E, and
let V be a local system of Qg-vector spaces on S. The zeta function of V on § is
defined to be the product of the local zeta functions,

Z(5,V,s) = H Z,(S,V,s) (product over all primes of E).

For a finite prime v where S and V have good reduction, i.e., where S reduces to a
complete smooth algebraic variety S(v) over x(v) and V reduces to an £-adic local
system V(v) on S(v), the local zeta function is defined to be the zeta function of
V(v) on S(v):

Zv(S)V>s) = Z(S(U)7V(U)v qv_s)> Qv = [""(U)]

Thus, for a good v,

ZA(SVs) =ep | 3 DT T(EV)- L
n>0 €S (Fan)

=[] det(@ — F7*|H (S(w) @ F, V() D"

The proper smooth base change theorem in étale cohomology (ibid. VI.4.2)
shows that for a good v there is a canonical isomorphism

H(S® Q" V)~ H'(S(v) ® F, V(v)).

Consequently,

)i+1

Z,(S,V,5) = [[ det(1 - Fog;*|H'(S © @, V)

where now F, denotes a geometric Frobenius element in Gal(Q*/E).

In summary, Z,(S,V,s) can be defined in terms of action of Gal(Q®/E) on
the étale cohomology group H*(S ® Q*,V), and it can be computed in terms of
the action of the Frobenius element on the fibres of V, at the points on S(v) with
coordinates the fields Fyn.
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Noncomplete varieties. Let S be a smooth variety over a finite field. When S
is not complete, the two formulas (C.2.1) and (C.2.2) for the zeta function differ:
Grothendieck’s Lefschetz trace formula shows that the first definition gives

i+1

Z(8,T)h = Hdet(l — FT|H{(S ®F, Q)Y

where H:(S®TF, Q) denotes cohomology with compact support, and the second is

Z(S,T)2 = [ [ det(1 - FTIH (S @ F,Qg))"1"",

Neither of these zeta functions has a functional equation. In fact, there is a duality
between the cohomology with compact support and the ordinary cohomology, and
it is the fact that these two cohomologies coincide when S is complete that gives
the functional equation for Z(S,T).

Evidently, we need to find a definition that is intermediate between these two
definitions. When S has a natural compactification S (not necessarily smooth)
intersection cohomology with the middle perversity provides cohomology groups
TH'(S,Qy) that are self-dual and intermediate between H(S, Q) and H:(S,Qy);
we define

Z(5T) = Hdet(l — FT|IH'(S ® F, Q)"0

Note that this zeta function depends on the whole of S, i.e., that the boundary of
S in S contributes to Z(S,T).

When S is a variety over a number field E with a natural compactification S,
then we can define

Z(S,s) = HZ(S’S)

where, for good primes,

Z,(8,s) = Hdet(l— VasSITH (S @ QY Qp) (-

The analogue of the proper smooth base change theorem for intersection cohomology
shows that

Zy(S,8) = Z(S(v),q;°)-

Let j be the open immersion S < §. The intersection cohomology of S is de-
fined to be the hypercohomology of a certain complex IC. Let j;Q, be the extension
by zero of the constant sheaf Q¢ on S to S. There are natural homomorphisms

31Q¢ = Rj.Qp « IC
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whose cokernels have homology supported on S—S. Thus the trace of an operator on
TH*(S,Q¢) =4 H*(S,IC) is the sum of the trace of the operator on H} (S, Q¢) =4
H*(S,1Q¢) with the trace of an operator on the cohomology group of a complex
supported on the boundary. It is therefore natural to regard Z(S,T); as being the
contribution of S itself to the zeta function, and Z(S,T)/Z(S,T); as being the
contribution of the boundary.

In summary, Z(S,T); can be regarded as the contribution of S itself to the zeta
function, and it can be computed either in terms of the number of points of S with
coordinates in F, or in terms of the cohomology groups with compact support.

All of this applies to Shimura varieties. The natural compactification to take is
the Baily-Borel compactification. The above discussion explains why, in computing
the contribution of S itself to the zeta function, we need to compute the points on
the reduction of S with coordinates in finite fields. In fact, we are interested in
the zeta function of some summand of the intersection cohomology cut out by the
Hecke operators, and to find the contribution of S to this zeta function one needs to
compute the trace a Hecke operator times a power of the Frobenius endomorphism
on the cohomology with compact support. For this we need Deligne’s conjecture.

Deligne’s conjecture. The Lefschetz trace formula is definitely false in general
for a noncomplete variety (or a noncompact topological space). Consider for exam-
ple the affine line (or the complex plane) and the map

a: Al 5 ALz 241

Clearly a has no fixed points, but it acts on HY(A!,Q,) as the identity map, and
as the remaining cohomology groups are zero, the alternating sum of the traces is
1 # 0. The result is the same if the cohomology groups with compact support are
used: here H:(A',Q,) =0 for i # 2, and the trace of & on H2(A!, Q) is 1. Note
that the map extends to P! and has a fixed point with multiplicity 2 at oo, which is
consistent with the fact that the traces of the map on H°(P',Q,) and H?(P',Q,)
are both 1.

Nevertheless, Deligne conjectures the following. Let S be a smooth variety
over an algebraically closed field k, and let V be an f-adic local system on S
(£ # char(k)). Consider a correspondence

SETL s 4oV Y.

When « is proper and [ is finite, the correspondence defines a homomorphism
v: HY(S,V) — H(S,V) as before, and we write

Te(1HZ(S,V)) = 3 (=)' Te(y|HL(S, V).
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Also, for each fixed point ¢ of the correspondence, we get a homomorphism
Y Ve = Vs, s=at) =p6(t).

Now suppose that .S and V are defined over a finite field. Then, as we noted above,
there is a canonical isomorphism F*V — V, and we can compose the original
correspondence with F” to get a new correspondence

sET Il g oy gy g FY,

which we denote (7).

Conjecture C.3 (Deligne). There exists an ro such that for all r > rg,

Te(yO HZ (S, V) = > Tr(% 7 Vagy),
t

where the sum is over the fixed points t of the correspondence ("), i.e., the set of
points t such that «(t) = FT3(t).

In fact, Deligne’s conjecture is more general than we have stated it—he does not
require S or V to be smooth, and he allows 3 to be quasi-finite.

Theorem C.4. Assume that resolution of singularities holds; then Conjecture
C.3 is true.

Proof. This has been proved, independently and almost simultaneously, by Pink
and Shpiz—see [Pink 1990] and [Shpiz 1990]. O

Since resolution of singularities is not known in characteristic p # 0, this result
is not useful as stated. However, the results of Pink and Shpiz are much more
explicit—for example, in the case that V is the constant sheaf, they state that
Conjecture C.3 is true provided S can be realized as the complement of a normal
crossings divisor in a smooth compactification.

Exercise C.5. Verify the conjecture for the correspondence
AT E AT S AL @@= S,

where a =z — z + 1.
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Shimura varieties. Let Shx(G,X) be a Shimura variety, initially considered
over C, and let £: G — GL(V) be a representation of G on a finite dimensional
Q-vector space. This gives rise in a natural way to a local system of Q-vector spaces
V = Vk on Shg(G, X) (for the complex topology). For any g € G(Ay) we get a
correspondence on (Shi (G, X), Vk):

Shk (G, X) < Shg/ (G, X) — Shk (G, X)

where K’ = gKg~ !N K and the second map is the obvious quotient map. When we
“tensor” V with Qy, we obtain a local system of Qg-vector spaces Vi = Vi (Qy) for
the étale topology on Shi (G, X), and the sheaf and the correspondence is defined
over E(G,X). Write T(g) for this correspondence.

Write Shg (G, X)(v) for the reduction of Shg (G, X) modulo a prime v of
E(G,X), and set Sk (v) = Shg(G,X)(v) ® F. Let V(v) be the sheaf on Sk (v)
defined by V. For a sufficiently good prime, 7 (g) will define a correspondence on
the reduction, and we wish to compute

Te(7(9)" |HZ (Sk (v), V(v))).

Theorem C.6. Assume that Shk (G, X), V, and some smooth toroidal compact-
ification of Shi (G, X) have good reduction at a prime v. There exists an ry such
that for r > ro, and any g € G(A}),

Te(T(9) " |H: (Sk (v), V() = > Tr(T ()W) (C.6.1)
t/
where t' runs over the set of points in Shi (G, X)(F) such that g(t') = F"(t') (in

Shy (G, X)(F)) and t = g(t').

Proof. This follows from the more precise form of the theorem of Pink and Shpiz.
O

The object of the main body of the article is to compute the term on the right
of (C.6.1); by an abuse of notation, we denote it by

> Te(T(9) D Ve(€)).
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